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Abstract — In this paper, we illustrate a new ap-

proach to Monte Carlo simulation in the context of

uncertain resistive ladder networks. Given lower and

upper bounds on the value of each uncertain resis-

tor but no probability distribution, we consider the

problem of finding the expected value for a designated

gain. In view of the fact that no apriori probability

distributions for the uncertain resistors are assumed,

a certain type “distributional robustness” is sought.

It is seen that the expected gain which results via our

new method can differ considerably from the expected

gain which is obtained via a more classical approach.

I. Introduction and Formulation

Researchers have long recognized that Monte Carlo sim-
ulation results for electrical circuits can be quite sensitive
to the choices of probability distributions which are im-
posed on uncertain parameters; e.g., see [1], [4] and [11].
In this context, a typical question to ask is: If a circuit
has an uncertain resistor whose statistics are unknown, is
there justification to assume some “typical” distribution
such as normal or uniform? With such questions as mo-
tivation, this paper describes a new approach to Monte
Carlo simulation within the context of resistive ladder
networks. In view of the fact that no apriori probabil-
ity distributions are imposed on the circuit components,
a certain type of “distributional robustness” is sought.
For these special structures, we provide results which are
stronger than those obtained for the case of an arbitrary
resistive network; for example, see [10].

The conceptual framework for the new approach in this
paper originates with [5]. We address the case when
there is not even a partial statistical description of the
uncertainty. This setup can be contrasted with other
formulations; e.g., in the theory of robust statistics [6],
so-called ε-corruptions of known density functions are as-
sumed. Here, however, the only apriori information as-
sumed is bounds on the uncertain parameters. In the
context of this paper, such bounds are assumed for the
values of the resistances Ri entering the ladder network
under consideration. Whereas classical Monte Carlo the-
ory assumes a distribution as input to the theory, the
approach described herein leads to the “appropriate” dis-
tribution as the output of the theory; i.e., the theory

first determines the appropriate distribution, and, only
then is computer simulation carried out. Within our new
framework, it becomes possible to carry out Monte Carlo
simulation without knowing the probability distributions
for the uncertain parameters in advance.

To be more specific, we consider a resistive ladder net-
work consisting of an input voltage source Vin, an output
voltage Vout across a designated resistor Rout = Rn and
uncertain resistors R

.= (R1, R2, . . . , Rn) as depicted in
Figure 1.0.1.
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Figure 1.0.1: Ladder Network
We focus attention on the uncertain gain

g(R) .=
Vout

Vin
.

With each uncertain resistor Ri assumed to be an inde-
pendent random variable with probability density func-
tion fi(Ri), the joint probability density function is

f(R) .= f(R1, R2, . . . , Rn) = f1(R1)f2(R2) · · · fn(Rn)

and the multi-dimensional integral for the expected gain
is given by

E(g(R)) .=
∫

R
f(R)g(R)dR.

where R represents the box of admissible resistor values.
That is, to describe the uncertainty, for each resistor, we
write

Ri
.= Ri,0 + ∆Ri

with nominal manufacturing value Ri,0 > 0 and uncer-
tainty ∆Ri with given bounds

|∆Ri| ≤ ri; ri ≥ 0



for i = 1, 2, . . . , n. Subsequently, with

Ri ∈ Ri
.= [Ri,0 − ri, Ri,0 + ri],

the box of admissible resistor uncertainty is given by

R .= R1 ×R2 × · · · × Rn.

To complete the formal description of the basic circuit
model, we also include the condition that only positive re-
sistances are feasible. That is, Ri,0 > ri for i = 1, 2, . . . , n.

1.1 Probability Density Functions: Following the de-
velopment in [10], it is assumed that each Ri is an inde-
pendent random variable supported in Ri with an un-
known probability density function fi(Ri) which is sym-
metric about its mean Ri,0 and non-increasing with re-
spect to |Ri − Ri,0|. We write f ∈ F to denote an
admissible joint density function f(R) over R. Given
any f ∈ F , the resulting random vector of resistors is
denoted as Rf . Two important special cases of interest
are obtained when, for some resistor Ri, fi = u is the
uniform distribution or fi = δ is the impulse (Dirac) dis-
tribution centered on Ri,0.

II. Main Result

2.1 Theorem: Consider the multi-stage ladder network
of Figure 1.0.1. For the case of maximizing E(g(Rf )),
define probability density function f∗ with marginals f∗i
as follows: Set f∗i = δ for the inter-stage resistors
(R3, R6, . . . , Rn) and f∗i = u for the remaining resistors.
Then,

E(g(Rf∗)) = max
f∈F

E(g(Rf )).

For the case of minimizing E(g(Rf )), define probabil-
ity density function f∗ with marginals f∗i as follows:
Set f∗i = u for the inter-stage resistors (R3, R6, . . . , Rn)
and f∗i = δ for the remaining resistors. Then,

E(g(Rf∗)) = min
f∈F

E(g(Rf )).

III. Proof of Theorem 2.1

The proof of this theorem is facilitated by the use of three
preliminary lemmas.

3.1 Lemma: The gain g(R) can be expressed as

g(R) =
∏n

3
i=1 R3i

∆(R1, R2, . . . , Rn)

where ∆(R1, R2, . . . , Rn) is a multilinear function of the
network resistors R1, R2, . . . , Rn.

Proof: Using mesh analysis [8] and Cramer’s rule, the
output voltage can be written as

Vout =
Rn∆′(R1, R2, . . . , Rn, Vin)

∆(R1, R2, . . . , Rn)

where

∆′(R1, R2, . . . , Rn, Vin) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑3

i=1
Ri - R3 0 . . . 0 Vin

- R3

∑6

i=3
Ri - R6 0 . . . 0

0 - R6

∑9

i=6
Ri - R9 0 . . . 0

...
. . . . . . . . .

...
0 . . . 0 - Rn−6

∑n−3

i=n−6
Ri 0

0 . . . 0 - Rn−3 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

It is now easy to obtain

∆′(R1, R2, . . . , Rn, Vin) = Vin

(n−3)
3∏

i=1

R3i.

This leads to the indicated numerator of the gain.

The denominator of the gain is simply the determinant of
the mesh matrix. From mesh analysis, the mesh matrix
has the sum of the ith loop resistors in its ith diagonal en-
try and the negative of the shared resistors between the
loop i and j as its (i, j)th entry.

Hence, if the resistor under consideration is Rk, then the
determinant of the mesh matrix ∆ is of the form

∆ =
i

j

i j∣∣∣∣∣∣∣∣∣∣∣∣∣

...
...

. . . Rk + C1 . . . −Rk . . .
...

...
. . . −Rk . . . Rk + C2 . . .

...
...

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In view of this rank one dependency on Rk, it now follows
that ∆ is linear in Rk. Hence the denominator of the gain
is multilinear in all resistors of the circuit.

3.2 Lemma: For the ith resistor, define variables x
.=

Ri, y
.= (R1, R2, . . . , Ri−1, Ri+1, . . . , Rn), and denote the

determinant ∆ of the mesh matrix by

∆ .= C(y)x + D(y).

Then for all y associated with R ∈ R, both C(y) and D(y)
are positive.

Sketch of Proof: It first must be argued that C(y) 6= 0
for the ladder configuration. Subsequently, proceeding by
contradiction, suppose C(y) < 0. Since ∆ > 0, this forces
D(y) > 0. Letting

Ri = −D(y)
C(y)

,

we have
C(y)Ri + D(y) = 0.



This however, contradicts the fact that the mesh matrix
is nonsingular. The proof for D(y) > 0 is similar.

3.3 Remarks: The lemma and its proof to follow incor-
porate some of the ideas introduced in [10]. In contrast to
reference [10] where general resistive networks are consid-
ered, this paper provides results under the strengthened
hypothesis that a ladder is being considered. In the gen-
eral case, a so-called “essentiality condition” comes into
play.

3.4 Lemma: Given positive constants c, d, t > 0 such
that d− ct > 0, the inequality

d

ct(d− ct)(d + ct)
>

1
2c2t2

log(
d + ct

d− ct
)

holds.
Proof: It suffices to show that

2cd

t(d− ct)(d + ct)
− 1

t2
log(

d + ct

d− ct
) > 0. (∗)

Indeed, we define

z
.=

d + ct

d− ct

and note that z ≥ 1 since d− ct > 0. Hence, satisfaction
of (∗) is equivalent to

z

2
− 1

2z
− log z > 0

for all z > 1. Now letting

f(z) .=
z

2
− 1

2z
− log z

and computing

∂f

∂z
=

1
2

+
1

2z2
− 1

z

=
(z − 1)2

2z2
> 0,

it is apparent that f(z) is an increasing function in z.
Since f(1) = 0, it follows that f(z) > 0 for all z > 1.
Hence, (∗) holds and the proof is complete.

3.5 Proof of Theorem 2.1: Holding all resistors fixed
except Ri, by Lemma 3.1, the gain is of the form

g(R) =





b
cRi+d i = 3k;

aRi

cRi+d otherwise

where a, b, c and d are positive constants.

To handle both the inter-stage and the remaining resis-
tors, we take

g(R) =
aRi + b

cRi + d

with either a > 0 and b = 0 or b > 0 and a = 0.

In view of existing results on probabilistic robustness, for
example, see [5] and [7], the next step of the proof in-
volves noting that extremizing the expected gain can be
carried out over a distinguished subset of F consisting of
truncated uniform distributions. That is, for

t ∈ T
.= [0, r1]× [0, r2]× · · · × [0, rn],

we have
max
f∈F

E(g(Rf )) = max
t∈T

E(g(Rt))

where Rt is the random vector with probability density
function which is uniform over the truncation box

Rt .= Rt,1 ×Rt,2 × · · · × Rt,n

where
Rt,i .= [Ri,0 − ti, Ri,0 + ti].

Hence,

max
t∈T

E(g(Rt)) = max
t∈T

1
2nt1t2 · · · tn

∫

Rt

g(R)dR

with the understanding that if ti = 0, the corresponding
integral with 1

2t1
multiplier is calculated using an appro-

priate impulse distribution or L’Hopital’s rule.

We now prove the part of the theorem addressing the
maximum gain while noting that a similar proof can be
applied for the minimum gain. Indeed, let t∗ ∈ T be
the truncation corresponding to probability density func-
tions f∗i as prescribed in the theorem. That is, if f∗i = u,
then, t∗i = ri. Alternatively, if f∗i = δ, then, t∗i = 0. In
addition, let t ∈ T denote any candidate truncation for
the maximization of E(g(Rt)). To show that t∗ attains
the maximum, it will be shown that we can replace com-
ponents tk of t with corresponding components t∗k of t∗,
one at a time, without decreasing E(g(Rt)). For example,
with n = 3, such a sequential replacement corresponds to
the sequence of inequalities

E(g(R(t1,t2,t3))) ≤ E(g(R(t∗1 ,t2,t3)))

≤ E(g(R(t∗1 ,t∗2 ,t3)))

≤ E(g(R(t∗1 ,t∗2 ,t∗3))).

That is, by showing that

E(g(Rt)) ≤ E(g(R(t1,t2,...,tk−1,t∗k,tk+1,...,tn))),

holds for arbitrary k, we can replace components one at
a time until we arrive at the desired result

E(g(Rt)) ≤ E(g(Rt∗)).



Now, to separate out the dependence on Ri, we define
variable
X

.= Ri and y
.= (R1, R2, . . . , Ri−1, Ri+1, . . . , Rn) and

consider the conditional expectation

E(y, ti)
.=

1
2ti

∫ Ri,0+ti

Ri,0−ti

g(X, y)dX.

Claim: The inequality

E(y, ti) ≤ E(y, t∗i )

holds for all admissible y ∈ Y where Y denotes the box
of admissible resistor uncertainty for y.

To prove this claim, it is first noted that Lemma 3.1
and 3.2 imply that the conditional expectation under con-
sideration is

E(y, ti) =
1

2ti

∫ Ri,0+ti

Ri,0−ti

A(y)X + B(y)
C(y)X + D(y)

dX

=
1

2ti

∫ ti

−ti

ax + b

cx + d
dx

=
a

c
+

bc− da

2tic2
log

d + cti
d− cti

where a(y) .= A(y), b(y) .= A(y)Ri,0 + B(y), c(y) .=
C(y), d(y) .= C(y)Ri,0 + D(y). Furthermore, we obtain
partial derivative computed to be

∂E

∂ti
= (bc− ad)e(ti)

where

e(ti)
.=

d

cti(d− cti)(d + cti)
− 1

2c2t2i
log(

d + cti
d− cti

).

In view of Lemma 3.4, the inequality e(ti) > 0 holds.
Hence, for the inter-stage resistors, b = 0 leads to bc −
ad = −ad < 0, and

∂E

∂ti
< 0.

Therefore, E(ti, y) is maximized at ti = t∗i = 0. If Ri is
not an inter-stage resistor, however, then a = 0 leads to
bc− ad = bc > 0, and

∂E

∂ti
> 0.

Hence, E(ti, y) is maximized at ti = t∗i = ri. This com-
pletes the proof of the claim.

Finally, to complete the proof of the theorem, we now
observe that it follows from the claim that

E(g(Rt)) =
1

2n−1t1t2 · · · ti−1ti+1 · · · tn

∫

Y
E(y, ti)dy

≤ 1
2n−1t1t2 · · · ti−1ti+1 · · · tn

∫

Y
E(y, t∗i )dy

= E(g(R(t1,t2,...,ti−1,t∗i ,ti+1,...,tn))).

IV. Example

The ideas above are now illustrated for a three stage
network considered in [10], with nominal values R1,0 =
R4,0 = R5,0 = R7,0 = R8,0 = 1, R2,0 = 2, R3,0 = 3,
R6,0 = 5 and R9,0 = 7. To provide a case where a classical
Monte Carlo simulation yields a maximum expected gain
which differs dramatically from the one obtained via the
methods in this paper, we considered uncertainty bounds
equal to 80% of the nominal for the inter-stage resistors
and 10% for the remaining resistors. As prescribed by
Theorem 2.1, we carried out a Monte Carlo simulation
using an impulsive distribution for R3, R6 and R9 and a
uniform distribution for the remaining Ri. With 100, 000
samples, we obtained the estimate

E(g(Rf∗)) ≈ 0.1864.

Next, a classical Monte Carlo simulation using the uni-
form distribution for all resistors was carried out. This
time, an estimate

E(g(Ru)) ≈ 0.1554.

was obtained. In conclusion, it is apparent that the clas-
sical expected gain is less than the distributionally robust
expected gain by about 20%. We also note that in both
cases the expectation converges; see Figure 4.0.1 for the
convergence plots corresponding to the optimal and uni-
form distributions respectively.
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Figure 4.0.1: Convergence of Expectation



V. Concluding Remarks

For the example above, it is noted that the maximum
gain can be obtained by setting R1 = R4 = R5 = R7 =
R8 = 0.9, R2 = 1.8, R3 = 5.4, R6 = 9 and R9 = 12.6,
and

max
R∈R

g(R) ≈ 0.3535.

While the minimum gain can be obtained by setting R1 =
R4 = R5 = R7 = R8 = 1.1, R2 = 2.2, R3 = 0.6, R6 = 1
and R9 = 1.4, and

min
R∈R

g(R) ≈ 0.0134,

this range for the worst-case gain values is seen to differ
significantly from the expected gain values; e.g., notice
that

maxR∈R g(R)
maxf∈F E(g(Rf ))

≈ 1.8965

More generally, the lemma below provides the basis for
such comparisons.

5.1 Lemma: Consider the multi-stage ladder network of
Figure 1.0.1. For the case of maximizing g(R), define R∗

with components R∗i = Ri,0 + ri for the inter-stage resis-
tors (R3, R6, . . . , Rn) and R∗i = Ri,0−ri for the remaining
resistors. Then,

g(R∗) = max
R∈R

g(R).

For the case of minimizing g(R), define R∗ with com-
ponents R∗i = Ri,0 − ri for the inter-stage resistors
(R3, R6, . . . , Rn) and R∗i = Ri,0 + ri for the remaining
resistors. Then,

g(R∗) = min
R∈R

g(R).

Proof: Note that the gain is non-decreasing with respect
to the inter-stage resistors, and non-increasing with re-
spect to the remaining resistors, since a, b, c, d > 0. Hence
the result is easily obtained.

5.2 Remarks: The comparison of the worst-case and
expected gain values above suggests one direction for fur-
ther research. That is, for larger and more general resis-
tive networks, new theory facilitating such comparisons
would be useful in the evaluation of risk associated with
various degrees of uncertainty.

A second area for further research involves generalization
from the ladder network to rather arbitrary networks. A
fundamental problem is to characterize f∗ ∈ F maximiz-
ing or minimizing the expected value of some designated
gain. To this end, it is often quit possible to obtain results
along the lines given here for non-ladder configurations.

To illustrate how the ideas in this paper apply to net-
works in a non-ladder context, we consider the circuit in

Figure 5.2.1. With gain g(R) obtained using the voltage
across R8 as output, we now solve the problem of assign-
ing probability density functions to each resistor. Indeed,
for gain maximization, using analysis similar to that used
in the proof of Theorem 2.1, the following result is ob-
tained: For resistors R3 and R8, the Dirac delta function
is assigned and for the remaining resistors, a uniform dis-
tribution is assigned. With this distinguished assignment
of probability density functions f∗ ∈ F , it can be shown
that any other assignment leads to a smaller value of the
expected gain.

Finally, is interesting to note that this assignment of den-
sity functions leads to the maximum expected gain no
matter what nominal values Ri,0 are assumed by the re-
sistors and no matter what uncertainty bound ri ≤ Ri,0

is used. In terms of the theory developed in [10], all re-
sistors in this network satisfy the so-called essentiality
condition.
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Figure 5.2.1: Non-Ladder Network
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