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In the Name of Allah, the Most Gracious, the Most Merciful

“As for those who strive hard in Us, We will surely guide them to Our Paths.

And verily Allah is with the good doers”
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The will is infinite,

and the execution confined.

The desire is boundless,

and the act a slave to limit

Cesaro, 1905
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ABSTRACT

A new model-testing paradigm is introduced. This paradigm is illustrated

through the two long-range dependent models: Second-order self-similar, and

fractional ARIMA. We then consider the parameter-estimation problem when

the process is known to follow a certain model. We illustrate this new estimation

method on the two aformentioned long-range dependent models. The confidence

intervals and biasedness are obtained for the estimates using the new method.

This new method is then applied to pseudo-random data and to real traffic data.

We compare the performance of the new method to that of the widely-used

wavelet method, and demonstrate that the former is much faster and produces

much smaller confidence intervals of the long-range dependence parameter esti-

mate. We believe that the new method can be used as an on-line estimation tool

for the long-range dependence parameter and thus be incorporated in the new

TCP algorithms that exploit the known self-similar and long-range dependent

nature of network traffic.
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CHAPTER 1

INTRODUCTION

Internet users are well-acquainted with congestion, sometimes known as the

“world-wide wait” (WWW). Due to variable amounts of data sent over the Inter-

net, buffers at routers can become quite full. Thus, you may experience delays in

downloading files from the Internet because your data is waiting at a congested

router until it can be forwarded to you. Sometimes, buffers at routers are full,

and the router must drop packets. In this case, your wait may be even longer

because the dropped packets must be retransmitted.

Internet routers were originally designed using statistical models of telephone

traffic. However, recent findings have shown that telephone traffic models, e.g.,

Poisson models, do not hold for Local Area Network (LAN) traffic [24], Wide Area

Network (WAN) traffic [34], and World Wide Web (WWW) traffic [6]. Instead,

models exhibiting long-range dependence and self-similarity are more appropri-

ate. Hence, there has been much recent work on modifying TCP algorithms,

buffer sizes, algorithms for smart routers, etc., to deal better with the observed

congestion and packet loss.

The most well-known models of long-range dependent processes are fractional

Gaussian noise [28] (thus second-order self-similarity) and fractional ARIMA [9,

18]. Each of these models has a corresponding long-range dependence parameter
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β (β ∈ (0, 2)). The smaller the value of β, the more long-range dependent the

process is. Since the value of the parameter β indicates the intensity of this de-

pendence structure, it is important to have a better tool to estimate it, so that

the estimate is not biased and the confidence intervals are as small as possible.

Moreover, if we would like to estimate β on-line, then the estimation tool should

be as fast as possible.

Several methods for measuring the long-range dependence parameter β have

been proposed (see Appendix A for details of each one). The most well-known

methods are the R/S method [28, 23], variance-time analysis [23, 24], the peri-

odogram method [23, 24], the Whittle estimator [43], and the wavelet method [1,

32]. All these methods except Whittle’s are graphical. Only the last two give

confidence intervals. The least computationally intensive method of these meth-

ods is the wavelet method.

The body of this thesis is composed of three chapters, Chapters 2, 3, and 4.

Chapter 2 covers background definitions and theorems to be used later. Chapter 3

proposes a method for deciding whether or not a sample of a process has a given

parametric long-range dependence correlation structure. If it does, we propose in

Chapter 4 a method for estimating this parameter. When compared to the widely

used wavelet method, the new method gives much smaller confidence intervals and

proves to be much faster. We present concluding remarks and further research

directions in Chapter 5.
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CHAPTER 2

PRELIMINARIES

2.1. Introduction

Long-range dependence processes were observed as early as 1895 in astronom-

ical data sets studied by the astronomer Newcomb. More concrete work on long-

range dependence and self-similar processes was presented by Hurst and Mandel-

brot in early 1950s. Since then, this phenomenon was empirically shown to exist

in a number of fields, such as agronomy, astronomy, chemistry, economics, en-

gineering, environmental sciences, geosciences, hydrology, mathematics, physics,

and statistics. Since the early 1990s, evidence of long-range dependence and

second-order self-similarity in aggregate network traffic has continued to accu-

mulate [24, 34, 6]. As a result, several models of long-range dependent processes

been introduced, including fractional Gaussian noise [28] (thus second-order self-

similarity) and fractional ARIMA [9, 18].

In network traffic, long-range dependence corresponds to slowly decaying au-

tocorrelation functions and heavy-tailedness. The former shows the existence of

nontrivial correlation structure at large scales. This in turn leads to the “1/f

noise,” which implies larger contributions of low frequency components. Heavy-

tailedness on the other hand, indicates that large sample values have a nonnegli-

gible probability. Thus, samples drawn from a heavy-tailed distribution result in

a bulk of small values and another bulk of relatively very large values. Not sur-
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prisingly, this corresponds to extreme variability and slows down the convergence

rate of sample statistics. This in turn explains the burstiness observed in network

traffic. Such burstiness forces packets to experience long delays and some packets

are even dropped due to buffer overflow. This unpleasant behavior of network

traffic introduces difficulty and complexity into traffic and resource management.

Nevertheless, the long-range dependence structure helps predicting future sample

values.

To study network traffic, we start by considering it as a random process Yi,

i ∈ Z. It is of interest to develop a model of this process so that we can predict the

future values with certain probability. This will allow us to develop better conges-

tion control mechanisms, like Transmission Control Protocol (TCP), buffer sizes,

packet spacing, routers, better algorithms for smart routers, etc. This in turn

will reduce the loss of data being transmitted and increase the speed of transmis-

sion. In dealing with network traffic, we are most interested in the corresponding

increment process. This process was shown to be long-range dependent in the

work of Leland et al. [24]. Thus, to study network traffic, we need to invoke the

theory of probability and random processes.

This chapter introduces some mathematical definitions and properties of second-

order stationarity (in Section 2.2), second-order self-similarity (in Section 2.3),

and fractional ARIMA(p, d, q) models (in Section 2.4), that are essential in un-

derstanding the content of this thesis. The relation of these models to long-range
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dependence and the definition of the former are discussed in Section 2.5. Sec-

tion 2.6 presents some sample statistics that we use to estimate the second-order

statistics of the increment process of network traffic. The bias, covariance, and

distribution of the autocorrelation estimates are also presented to characterize

the reliability of the estimates.

2.2. Second-Order Stationarity

Consider a discrete-time stochastic process Xi, i ∈ Z [10, 32], where Xi is

viewed as the increment process of network traffic, measured in packets, bytes, or

bits. We say that Xi is strongly stationary if the families (Xi1 , Xi2 , . . . , Xin) and

(Xi1+k, Xi2+k, . . . , Xin+k) have the same joint distribution for all i1, i2, . . . , in, k ∈
Z and positive integers n. This form of stationarity turns out to be highly re-

strictive, and a weaker condition suffices for our purposes.

We say that Xi is second-order stationary if its mean and autocovariance

function, respectively, satisfy

E(Xi) = E(Xj), (2.1)

and

γ(Xi, Xj) = γ(Xi+k, Xj+k), (2.2)

for all i, j and k ∈ Z. The notation γ denotes the autocovariance function defined
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as

γ(Xi, Xj) = E[(Xi − E(Xi))(Xj − E(Xj))]. (2.3)

Thus, if Xi is a second-order stationary process, it has a constant mean, and its

autocovariance function is a function of k = i− j only, which allows us to write

γ(Xi, Xj) = γ(k). Note that γ(k) is an even function for real processes, i.e.,

γ(k) = γ(−k). We put σ2 = γ(0) and ρ(k) = γ(k)
σ2 to denote the variance and

autocorrelation function of the process Xi.

For traffic-modeling purposes, we would like Xi to be at least second-order

stationary so that its behavior or structure is invariant with respect to shifts in

time. Without this property, a model loses much of its usefulness as a compact

description of the assumed tractable phenomena [32].

2.3. Second-Order Self-Similarity

The notion of self-similarity or scale-invariance arises in many fields. To get

a deeper understanding of this notion we start by explaining the self-similarity

phenomenon on geometric images. A geometric image is said to be self-similar if

there exists a piece of this image (a self-similar piece) that if magnified properly

will give exactly the same image. An example of such is given in Figure 2.1 which

is known as the Sierpinski triangle. The dimension of such figures is a number D
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defined as

D =
ln(Number of self-similar pieces)

ln(Magnification factor)
. (2.4)

Geometric images with dimension D are called fractals. The notion of frac-

tals was first introduced by Mandelbrot (see [28] for details). The triangle in

Figure 2.1 has D ≈ 1.58 since it has three self-similar pieces, each can be magni-

fied by a factor of two to get the original triangle.

Figure 2.1. An example of a self-similar image.
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Statisticians and probabilists on the other hand used this scale-invariant phe-

nomenon to define self-similar processes, which are defined as follows [32]. Yt is

a self-similar process with self-similarity parameter H if for all a > 0 and t ≥ 0,

Yt =d a−HYat,

where the notation =d denotes equality in distribution. This means that Yt and

its normalized (by a−H) time scaled version Yat have the same distribution.

In the network traffic modeling context, Yt can be thought of as the cumu-

lative process or the total traffic up to time t. Analogous to fractals, for a > 1

where time is dilated, a contraction factor a−H is applied so that the magnitudes

of Yat and Yt are comparable. Likewise, for a < 1 the opposite holds true.

The self-similarity parameter H is also known as the Hurst parameter (which

explains the notation) named after the British hydrologist H. E. Hurst (1880–

1978) who was studying the Nile river minima and published his observations

in [19]. Negative values of H are prohibited since the corresponding Yt is not a

measurable process [40, 41]. The value H = 0 is not interesting since it implies

that for all t > 0, Yt = Y1 with probability one.

We consider the case where Yt has finite variance and stationary increments.

We also take Y0 = 0 with probability one. Thus, define the increment process

Xi = Yi − Yi−1 (i = 1, 2, . . .). With this setup, it can be shown that Xi has zero
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mean and a correlation given by

ρ(k) =
1

2
((k + 1)2H − 2k2H + (k − 1)2H), k ≥ 1. (2.5)

A process with the same second-order statistics as Xn is referred to as a second-

order self-similar process.

Define the aggregated process X(m)
n of Xi at aggregation level m as

X(m)
n =

1

m

mn∑

i=m(n−1)+1

Xi. (2.6)

That is, to create X(m)
n , partition Xi into non-overlapping blocks of size m, av-

erage their values, and then use n to index these blocks. In network traffic, this

can be viewed as “zooming out” in time, i.e., since many increments of Xi are

juxtaposed in time, zooming out makes the juxtaposed increments appear as one

increment, as shown in [23].

Let ρ(m)(k) denote the autocorrelation function of X(m)
n . Then, Xi is said to

be asymptotically second-order self-similar if for k ≥ 1

lim
m→∞ ρ(m)(k) =

1

2
((k + 1)2H − 2k2H + (k − 1)2H). (2.7)

Let ρ(k) denote the autocorrelation function of Xi, i.e., ρ(k) = γ(k)
σ2 . A value

H > 1 is prohibited since it contradicts the fact that |ρ(k)| ≤ 1 for all k. The

case H = 1 implies that ρ(k) = 1 for every k, which is of no practical importance.

Note also that with H = 1
2
, the Xi’s are uncorrelated. Hence, throughout this

thesis, we consider the range 0 < H < 1 only. The presence of self-similarity in
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network traffic was observed by Leland et al. [23, 24]. Since then, second-order

self-similarity has become a dominant framework for modeling network traffic.

An example of the self-similar process Yt is fractional Brownian motion, first

introduced by Mandelbrot [28]. The corresponding increment process Xi is frac-

tional Gaussian noise. When H = 1
2
, fractional Brownian motion coincides with

the ordinary Brownian motion.

2.4. Fractional ARIMA Models

We start this section by first defining autoregressive integrated moving-average

processes or simply ARIMA(p, d, q). Let Xi be such process. We assume that

µ = E(Xi) = 0, otherwise Xi must be replaced by Xi − µ in all subsequent for-

mulas. Let B denote the backward shift operator defined by BXi = Xi−1. Hence,

we can write Xi −Xi−1 = (1−B)Xi. Let p and q be non-negative integers.

Define the polynomials

φ(x) = 1−
p∑

i=1

φix
i,

and

ψ(x) = 1−
q∑

i=1

ψix
i,

with the notion that if p or q is zero then the sum is suppressed.
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Assume that all solutions of φ(x) = 0 and ψ(x) = 0 are outside the unit circle

to guarantee stationarity. Furthermore, let εi be zero mean independent and

identically distributed normal variables with variance σ2
ε . An ARIMA(p, d, q) is

defined to be the stationary solution of

φ(B)(1−B)dXi = ψ(B)εi.

The fractional ARIMA(p, d, q) model proposed in [9, 17] is an extension of

the ARIMA(p, d, q) in the sense that d is allowed to take any real value in the

interval (−1
2

, 1
2
). In this context, a binomial expansion in terms of the backward

shift operator B is used to express the differencing operator (1−B)d, namely

(1−B)d =
∞∑

i=0

Γ(i− d)

Γ(i + 1)Γ(−d)
Bi,

where Γ(·) denotes the gamma function.

We remark that a relationship can be drawn between the general fractional

ARIMA(p, d, q) process Xi and the standard fractional ARIMA(0, d, 0) process

X∗
i . More precisely, Xi is obtained by passing X∗

i through the linear filter

ξ(B) =
∞∑

i=0

ξiB
i = φ(B)ψ−1(B).

The coefficients ξi can be calculated by matching the powers of the polynomial

quotient φ(B)ψ−1(B) with those of ξ(B). For instance, if

φ(B) = 1

and

ψ(B) = 1− ψ1B,
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then we obtain

φ(B)ψ−1(B) = 1− ψ1B + ψ2
1B

2 − · · ·

Therefore,

ξi = (−1)iψi
1.

The next step, if we let γ(k) and γ∗(k) denote the autocovariances of the

processes Xi and X∗
i , respectively, then the following relationship holds:

γ(k) =
∞∑

i,j=0

ξiξjγ
∗(k + i− j).

In practice, we want both p and q to be small [17]. In fact, in the properties of

an ARIMA(p, d, q) process at high lags or at low frequencies are similar to those

of an ARIMA(0, d, 0) for the same d value.

Hence, in the remainder of this thesis, we consider the fractional ARIMA(0, d, 0)

process only. In this case, the autocovariances follow using a formula in [8]

γ(k) =
σ2

ε (−1)kΓ(1− 2d)

Γ(1 + k − d)Γ(1− k − d)
.

The correlation function then follows and can be further simplified using the

extension formula of gamma functions

ρ(k) =
Γ(1− d)Γ(k + d)

Γ(d)Γ(1 + k − d)

=
k∏

i=1

k − i + d

k − i + 1− d
. (2.8)

The asymptotic relation between second-order self-similar processes and frac-

tional ARIMA(0, d, 0) processes, in addition to the long-range or short-range
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dependence that they imply, depending on the value of their parameter is the

topic of the following section.

2.5. Implications and Long-Range Dependence

Let Xi be a second-order self-similar or a fractional ARIMA(0, d, 0) process.

If the aggregated process X(m) is viewed as the sample mean of X, i.e.,

X(m) =
1

m

m∑

i=1

Xi,

then it is not hard to show that

(σ(m))2 ≈ σ2m−β, (2.9)

as m →∞, where (σ(m))2 is the variance of X(m), β = 2−2H in the second-order

self-similar case and β = 1−2d in the fractional ARIMA(0, d, 0) case. In fact, for

exact second-order self-similar processes, (2.9) holds with equality for all values

of m.

It also follows from (2.5) and (2.8) that the autocorrelation functions decay

hyperbolically rather than exponentially fast. More precisely,

ρ(k) ∼ cρk
−β as k →∞, (2.10)

where β is as before, and the constant cρ = H(2H − 1) in the second-order self-

similar case, and cρ = Γ(1− d)/Γ(d) in the fractional ARIMA(0, d, 0) case.
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Let f(λ) denote the spectral density function corresponding to the increment

process Xi. By definition, the spectral density function f(λ) is the discrete-time

Fourier-transform of the autocorrelation function ρ(k), i.e.,

f(λ) =
∞∑

k=−∞
e−j2πnkλρ(k),

where j2 = −1.

As noted in [5, p. 43], (2.10) is equivalent to1

f(λ) ∼ cf |λ|−α as λ → 0, (2.11)

where α = 1− β and

cf =
σ2cρ

Γ(1− α) sin(απ
2

)
.

We say the process or time series Xi is long-range dependent if

∞∑

k=−∞
|ρ(k)| = ∞. (2.12)

The process is short-range dependent otherwise.

Thus, in view of (2.10), for β ∈ (0, 1] the process Xi is long-range dependent

and it is short-range dependent for β ≥ 1. From (2.11), when Xi is long-range

1The equivalence is in the sense that (2.10) and (2.11) each imply (2.12). Strictly speaking,
from a purely mathematical point of view, this equivalence does not hold; see [12] for more
details.
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dependent, the spectral density f(λ) diverges around the origin implying larger

contributions of low frequency components. In this case we say that the spectral

density obeys a power law near the origin and we deal with “1/f noise” [28].

The presence of long-range dependence has both positive and negative effects.

For such processes, the forecasting becomes easier in the sense that good short-

and long-term predictions can be obtained when a long record of past values is

available (see [5] for details). On the other hand, the classical time series approach

to estimating the second-order statistics assumes short-range dependence. The

presence of long-range dependence has been shown to significantly slow the speed

of convergence of the estimates. The rate of convergence becomes slower as the

long-range dependence increases (β decreases). The following section discusses

this issue in more detail.

2.6. Statistical Sampling

Since we are dealing with measurements and no a priori probability density

function, we use statistical sampling to estimate the second-order statistics of the

process.

Let Xi be a second-order stationary process with mean, variance, and covari-

ance µ, σ2, and γ(k), respectively. The sample mean and the sample covariance
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are given by the following formulas:

µ̂n =
1

n

n∑

i=1

Xi, (2.13)

and

γ̂n(k) =
1

n

n−k∑

i=1

(Xi − µ̂n)(Xi+k − µ̂n), (2.14)

where n is the number of samples to be used. The sample variance is given by

σ̂2
n = γ̂n(0).

Likewise, the sample autocorrelation is given by

ρ̂n(k) =
γ̂n(k)

σ̂2
n

. (2.15)

The relationship between these estimates and the estimated parameters (the

asymptotic distribution of the difference, biasedness, etc.) was studied extensively

for both the short-range and long-range dependence cases (see [3] for details on

the former and [18] on the latter). Hosking’s results [18] focused on processes

with hyperbolically decaying autocorrelation functions as in (2.10). In this the-

sis, we will be interested in the relationship between ρ̂ and ρ.

In [18], Hosking assumes that the process Xi has the representation

Xi = µ +
∞∑

j=0

ψjai−j, (2.16)
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where

ψj ∼ δj−
1
2
(1+β), δ > 0, as j →∞, (2.17)

and ai is a white-noise process consisting of independent, identically distributed

N(0, σ2) random variables. As noted by Hosking [18], both fractional Gaussian

noise and fractional ARIMA processes have the representation (2.16) – (2.17). For

such process, the following two theorems (see [18, Theorems 6 and 7]) provide

the asymptotic bias, covariance, and limiting distribution of the sample autoco-

variances ρ̂n(k), k ≥ 1.

Theorem 2.6.1. Let Xi be a time series satisfying (2.16) and (2.17). Then as

n →∞, the asymptotic bias and covariance of ρ̂(k), k ≥ 1, are given by

E(ρ̂n(k))− ρ(k) ∼ −2cρ(1− ρ(k))n−β

(1− β)(2− β)
, (2.18)

cov(ρ̂n(k), ρ̂n(l)) ∼ 2c2
ρ(1− ρ(k))(1− ρ(l))K2n

−2β, if 0 < β <
1

2
, (2.19)

cov(ρ̂n(k), ρ̂n(l)) ∼ 4c2
ρ(1− ρ(k))(1− ρ(l))n−1 log(n), if β =

1

2
, (2.20)

cov(ρ̂n(k), ρ̂n(l)) ∼ n−1
∞∑

s=−∞

[
ρ(s)ρ(s + k − l) + ρ(s)ρ(s + k + l) + 2ρ(k)ρ(l)ρ(s)2

−2ρ(k)ρ(s)ρ(s + l)− 2ρ(l)ρ(s)ρ(s + k)
]
, if

1

2
< β < 2, (2.21)

where K2 is defined shortly.

Theorem 2.6.2. Let Xi be a time series satisfying (2.16) and (2.17). Then as

n →∞,
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1. If 0 < β < 1
2
, and Rk := nβ(ρ̂n(k)− ρ(k))/(1− ρ(k)), then as n →∞, the

common limiting distribution of the Rk has rth cumulant

κr = cr
ρ2

r−1(r − 1)!Kr, (2.22)

where

K1 =
−2

(1− β)(2− β)
,

Kr =
∫ 1

0
· · ·

∫ 1

0
g(x1, x2)g(x2, x3) · · · g(xr−1, xr)g(xr, x1)dx1dx2 · · · dxr, r ≥ 2,

with

g(x, y) = |x−y|−β−x1−β + (1− x)1−β + y1−β + (1− y)1−β

1− β
+

2

(1− β)(2− β)
.

2. If β = 1
2
, and Rk := (n/ log n)

1
2 (ρ̂n(k)− ρ(k))/(1 − ρ(k)), then as n → ∞,

the common limiting distribution of the Rk is N(0, 4c2
ρ).

3. If 1
2

< β < 2, and Rk := n
1
2 (ρ̂n(k) − ρ(k)), then as n → ∞, Rk has a

limiting distribution that is multivariate normal zero mean and covariances

given by n times (2.21).

We note here that this latter result for β ∈ (1
2
, 2) was found by Anderson [3].

From (2.19) it is seen that the smaller β is (or equivalently, the higher the

long-range dependence) the slower the decay of the bias of the sample autocor-

relations as the sample size n increases.
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Note that the covariance expression in (2.21) can be further simplified in the

second-order self-similar and fractional ARIMA(0, d, 0) cases. In the second-order

self-similar case (2.21) is reduced to

cov(ρ̂n(k), ρ̂n(l)) ∼ n−1
[ S∑

s=−S

(
ρ(s)ρ(s + k − l)

+ρ(s)ρ(s + k + l) + 2ρ(k)ρ(l)ρ(s)2 − 2ρ(k)ρ(s)ρ(s + l)− 2ρ(l)ρ(s)ρ(s + k)
)

+{2H(2H − 1)}2(1 + ρ(k)ρ(l)− ρ(k)− ρ(l))
(
ζ(4− 4H)−

S∑

s=−S

s4H−4
)]

,

if 0 < H <
3

4
, (2.23)

where S is a sufficiently large number for which an approximate equality holds

in (2.10) and ζ(·) is the zeta function, defined as

ζ(x) =
∞∑

k=1

k−x.

In the fractional ARIMA(0, d, 0) case, (2.21) is reduced to (this result follows

from [18])

cov(ρ̂n(k), ρ̂n(l)) ∼

n−1g(ρ∗(k − l) + ρ∗(k + l) + 2ρ(k)ρ(l)− 2ρ(k)ρ∗(l)− 2ρ∗(k)ρ(l)),

if
−1

2
< d <

1

4
, (2.24)

where

g =
Γ4(1− d)Γ(1− 4d)

Γ4(1− 2d)
,

ρ∗(k) =
Γ(1− 2d)Γ(k + 2d)

Γ(2d)Γ(1 + k − 2d)
,

and ρ(k) is given by (2.8).
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2.7. Related Work

Several methods have been developed to estimate the long-range dependence

parameter. The widely used method in the networking community is the wavelet

method. Thus, in this section we consider the wavelet method, which we will

use to compare the proposed method with. Other methods are described in Ap-

pendix A. The wavelet method is due to Abry and his co-workers (see [1, 2] and

references therein), and is based on wavelets and the spectral relation of (2.11).

A MATLAB program has been developed by Abry and Veitch that makes the

use of this method even easier.

Let ψ0 denote the mother wavelet. Construct other wavelets ψj,k such that

{ψj,k(t) = 2−j/2ψ0(2
−jt− k), k ∈ Z}.

Let dX(j, k) denote the projection of the data set X onto the wavelet ψj,k, namely

dX(j, k) = 〈X,ψj,k〉, (2.25)

where 〈·, ·〉 denotes the inner product. Then define the non-parametric unbiased

random variable µj of the variance of the process dX(j, ·) as

µj =
1

nj

nj∑

k=1

|dX(j, k)|2, (2.26)

where nj is the number of coefficients at octave j.
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Let yj = log2(µj), then it turns out that for a long-range dependent process

X, yj is asymptotically normally distributed:

yj ∼ N
(
jα + log2(cfC),

2(log2 e)2

nj

)
, (2.27)

where α and cf are defined in (2.11) and C is a constant.

This method gives a plot of yj against the octave j together with confidence

intervals about yj (which is asymptotically normally distributed under some as-

sumptions). This plot is called the logscale diagram. From (2.27), the logscale

plot results in a straight line for large values of nj. The slope of this straight line

is the estimated long-range dependent parameter α̂.

2.8. Summary

Various notations and mathematical definitions and properties were intro-

duced in this chapter which will be used throughout this thesis. Mainly, we

started by defining second-order stationary processes, second-order self-similar

processes, and fractional ARIMA processes. We then defined the long-range de-

pendence phenomena, which is implied by the latter two processes. We than

provided the distribution of the sample autocorrelation function. These ideas

will be exploited to develop the new method.
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CHAPTER 3

A NEW METHOD TO DECIDE WHETHER OR NOT

A PROCESS HAS A GIVEN PARAMETRIC

CORRELATION STRUCTURE

3.1. Introduction

We begin this chapter by proposing a method in Section 3.2 that uses the

structure of the autocorrelation function of the model that we would like to fit

the data to. We estimate the autocorrelation function of the data as described

in Section 2.6, and then apply a curve-fitting criterion, which we call the opti-

mization method. If the resultant error is high, then the given process fails the

test and may not be considered to follow that particular model. Otherwise, the

process is assumed to be long-range dependent following the assumed model with

the parameter as estimated. The criteria that we followed to decide whether the

error is large or not is the probability of false alarm. For a wide range of the

parameter, we develop a relation between the the probability of false alarm and

the cutoff to decide how large the error can be.

In Section 3.3 we perform an empirical study using artificial data to make a

proper decision on the cutoff. The pseudo-random data was generated by MAT-

LAB, simulating second-order self-similar, and fractional ARIMA(0, d, 0) data.

We used two sets of real data that are known to be second-order self-similar, the
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yearly minimum water levels of the Nile River at the Roda Gauge, Egypt that was

studied by H. E. Hurst [19], and Ethernet measurements for a local area network

at Bellcore analyzed by Leland et al. We also applied the new testing method

to artificial and real data that is known not to be second-order self-similar or

fractional ARIMA.

Although we focus on processes that are long-range dependent, mainly second-

order self-similar and fractional ARIMA(0, d, 0) processes, the new method is

readily generalizable to other processes. In other words, the new method can be

used as a tool to check the validity of a model in characterizing certain process.

We end the chapter by providing a summary in Section 3.4.

3.2. Optimization Method

Suppose we have a record of network traffic that records the total packets or

bytes received in a period of time. Let Xi denote its increment process. There

is always a vast interest in the process Xi by the networking community, since

understanding the behavior of this process allows us to develop better conges-

tion control mechanisms, like Transmission Control Protocol (TCP), buffer sizes,

packet spacing, routers, better algorithms for smart routers, etc.
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Define the error function EK(β) as

EK(β) =
1

4K

K∑

k=1

{ρ(k)− ρ̂n(k)}2, (3.1)

where ρ(k) denotes the autocorrelation function of the model with parameter β

that we would like to fit the data to, ρ̂n(k) is the sample autocorrelation function

of the data and K is the largest value of k for which ρ̂n(k) is to be computed to

reduce edge effects. Since we estimate the model parameter β based on optimiz-

ing (3.1), we call this estimation method the optimization method.

3.2.1. How Small Should EK(β) Be?

We expect EK(β) to be close to zero if Xi is close to the model. The estimated

parameter β̂ is chosen so that EK(β̂) is the minimum of the error function over

the appropriate range of the parameter. It is easily seen that the highest EK(β̂)

can be is 1. Thus, we consider that the prescribed model fits the process Xi if

EK(β̂) = e, where e is “much smaller than 1”.

Let UK be the row vector with entries

uk = ρ(k)− ρ̂n(k), k = 1, 2, . . . , K.

Thus, the error function can be rewritten as

EK(β) =
UKUT

K

4K
. (3.2)
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Define the probability of false alarm as

PFA = P (EK(β̂) ≥ e|R = Rβ), (3.3)

where R is the covariance matrix of UK and the condition R = Rβ denotes that

the process follows the model with the corresponding covariance R = Rβ. Thus,

we would like to pick e so that PFA ≤ 0.05.

Next, note that

PFA = P (EK(β̂) ≥ e|R = Rβ)

≤ P (EK(β) ≥ e|R = Rβ)

= P (
UKUT

K

4K
≥ e|R = Rβ)

= P (UKUT
K ≥ 4Ke|R = Rβ)

= 1− SK(4Ke), (3.4)

where SK is the cdf of UKUT
K .

Theorem 3.2.1. For β ∈ [1
2
, 2), SK is the cumulative distribution function of

Stacy’s distribution with the corresponding probability density function given by

sK,λ(t) = t
K
2
−1

∞∑

k=0

(−t)k

Γ(K
2

+ k)

∑
∑K

l=1
ml=k

K∏

n=1

Γ(mn + 1
2
)(2λn)mn+ 1

2

mn!
√

π
, (3.5)

where Γ(·) denotes the gamma function, and λ = [λ1, . . . , λK ], where λn, for

n = 1, 2, . . . , K, are the eigenvalues of the covariance matrix Rβ of UK .
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Proof: From Theorem 2.6.2, for β ∈ [1
2
, 2), UK is zero mean multivariate nor-

mally distributed with covariance R with the corresponding entries

rkl = cov(ρ̂n(k), ρ̂n(l)).

The distribution of UKUT
K has the following characteristic function [37, p. 65]:

Φ(ω) := E[ejωUKUT
K ]

=
K∏

n=1

(1− jω2λn)−
1
2 . (3.6)

But this is the characteristic function of the sum of the independent random

variables vn, n = 1, 2, . . . , K, each distributed as Γ(1
2
, 2λn), where Γ(a, b) is the

Gamma distribution with probability density function

γa,b(x) =
xa−1e−

x
b

baΓ(a)
, x > 0.

The distribution of such sums is discussed by Stacy [36], from which we get

Stacy’s distribution of the Theorem. This concludes the proof.

We next consider the asymptotics of SK(t). To do this, we invoke the follow-

ing form of the Central Limit Theorem (see [26, p. 287] for proof).

Theorem 3.2.2. Let w1, w2, . . . be independent variables satisfying

E(wj) = 0, var(wj) = σ2
j , E(|w3

j |) < ∞

and such that

1

σ(n)3

n∑

j=1

E(|w3
j |) → 0 as n →∞ (3.7)
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where

σ(n)2 =
n∑

j=1

var(wj).

Then as n →∞,

1

σ(n)

n∑

j=1

wj
D→ N(0, 1).

This gives us the following result.

Lemma 3.1. For β ∈ [1
2
, 1), suppose (3.7) holds, then for large K,

SK ∼ N(
K∑

j=1

λj, 2
K∑

j=1

λ2
j).

Proof: The proof is obvious.

Note that in our analysis, (3.7) is equivalent to

∑K
j=1 λ3

j

(
∑K

j=1 λ2
j)

3
2

→ 0 as K →∞.

An empirical study shows that for β ∈ [1
2
, 1), as K increases the ratio decreases.

Thus, in the remainder we apply Lemma 3.1 to find the right number e.

Figures 3.1 and 3.2 present the minimum e to get PFA < 0.05 for different β

values in [1
2
, 2) in the second-order self-similar case (H = 1 − β

2
) and fractional

ARIMA case (d = 1−β
2

), respectively. To obtain the corresponding e value, the

Normal distribution of Lemma 3.1 was applied with n = 4000 and K = 50.
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Figure 3.1. A plot of argmine1 − SK(4Ke) in (3.4) and the empirical upper bound e
vs. the Hurst parameter H = 1 − β

2 in the second order self-similar case. Here SK is
taken to be normal, based on Lemma 3.1.

From Figure 3.1, we see that e ≈ 1.5 × 10−4 for H < 0.60. As the long range

dependence increases (H ∈ (0.60, 0.75)), the e increases up to about 3.5× 10−3.

Similar comments apply to the fractional ARIMA(0, d, 0) case (Figure 3.2). As

can readily be seen from (3.4), this e is an upper bound on the actual e.

In the following section, an empirical study is performed to find the appro-

priate value e for the whole range of the parameter.
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Figure 3.2. A plot of argmine1 − SK(4Ke) in (3.4) and the empirical upper bound e
vs. the difference parameter d = 1−β

2 in the fractional ARIMA(0, d, 0) case. Here SK

is taken to be normal, based on Lemma 3.1.

3.3. Empirical Study

In this section, we perform an empirical study to obtain the cutoff value e. For

this purpose, we used second-order self-similar artificial data (Section 3.3.1), frac-

tional ARIMA(0, d, 0) artificial data (Section 3.3.2), and real data (Section 3.3.3).
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3.3.1. Second-Order Self-Similar Artificial Data

For each H = 0.01, 0.02, . . . , 0.99, we start by generating 104 realizations of

a fractional Gaussian noise using MATLAB. The length of each realization is

n = 4000 points. In our analyses we take K = 50 in (3.1) to reduce edge effects.

Based on (3.3), for each H, e is chosen so that 95% of the obtained EK(Ĥ) are

smaller than e. The plot of e versus H is given in Figure 3.1. For H < 0.60, the

upper bound on e (theoretical e in (3.4)) and the empirical value of e almost co-

incide. As the long-range dependence increases, the upper-bound becomes looser

and looser. On the other hand, as the number of realizations increases, the em-

pirical plot of e gets smoother and decreases slightly on the range H ∈ (0.80, 1)

(not shown).

Since the empirical plot of e vs. H is less than 10−3 for H ∈ (0, 1), the cutoff

that we take as our measuring criteria is the value e = 10−3. Thus, if the error

function is less than 10−3 (i.e., EK(H) < 10−3), then the process Xi is accepted as

fitting the prescribed second-order self-similar model, otherwise it is not (which

may be also due to the lack of sufficient data).

To illustrate the power of our test, consider the following short-range depen-

dent process. Let Xi be an ARIMA(0.90, 0, 0) = AR(0.90). Then applying the

optimization method results in EK(Ĥ) = 7.4 × 10−3. Thus, the optimization

method declares the process Xi not second-order self-similar in agreement with

the truth.
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3.3.2. Fractional ARIMA(0, d, 0) Artificial Data

For each d = −0.49,−0.48, . . . , 0.49, we start by generating 104 realizations

of a fractional ARIMA(0, d, 0) using MATLAB. The length of each realization is

n = 4000 points. In our analyses we take K = 50 in (3.1) to reduce edge effects.

Based on (3.3), for each d, e is chosen so that 95% of the obtained EK(d̂) are

smaller than e. The plot of e versus d is given in Figure 3.2. For d < 0.10, the the

upper bound on e (theoretical e in (3.4)) and the empirical value of e almost co-

incide. As the long-range dependence increases, the upper-bound becomes looser

and looser. On the other hand, as the number of realizations increases, the em-

pirical plot of e gets smoother and decreases slightly on the range d ∈ (0.30, 0.50)

(not shown).

The empirical plot of e vs. d is less than 10−3 for d ∈ (−1
2

, 1
2
). Therefore,

the cutoff that we take as our measuring criteria is the value e = 10−3. Thus, if

the error function is less than 10−3 (i.e., EK(d) < 10−3), then the process Xi is

accepted as fitting the prescribed fractional ARIMA(0, d, 0) model, otherwise it

is not (which may be also due to the lack of sufficient data).

To illustrate the power of our test, consider the following short-range depen-

dent process. Let Xi be an ARIMA(0.90, 0, 0) = AR(0.90). Then applying the

optimization method results in EK(d) = 6.9 × 10−3. Thus, the optimization
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method declares the process Xi not fractional ARIMA(0, d, 0) in agreement with

the truth.

3.3.3. Real Data

In this section, we study standard measurements where second-order self-

similarity was observed. Namely, the Nile river data (Figure 3.3), and the Bell-

core data (Figure 3.4). Throughout this study, we take K = 50 in the error

function formula (3.1). We then consider a process that is not second-order self-

similar, namely the Variable Bit Rate data. A summary of the results is provided

in Table 3.1

Figure 3.3 presents the yearly minimum water levels of the Nile river mea-

sured at the Roda Gauge near Cairo, Egypt, for the years 622− 1281 [39]. This

data led Hurst to the observation of what was later called the Hurst effect, or

self-similarity [19]. Applying the optimization method to this data results in the

error function E = 2.15 × 10−4. Thus, the optimization method acknowledges

the fact that this process is second-order self-similar.

Figure 3.4 displays Ethernet measurements for a local area network traffic at

Bellcore, Morristown, New Jersey [23, 24]. It was collected on August 29, 1989

and lasted for about fourteen minutes. Each observation represents the number of

packets sent over the Ethernet per 100 ms. This data was considered by Leland et
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Figure 3.3. Yearly minimum water levels of the Nile River at the Roda Gauge near
Cairo, Egypt (622-1281).

al. and used to show that network traffic is second-order self-similar. Passing this

data through the optimization method gives the error function E = 1.15× 10−4.

Thus, the optimization method acknowledges again the fact that this process is

second-order self-similar.

The last real data that we consider, is data that is known not to be second-

order self-similar. Figure 3.5 displays the amount of codec information per frame

for a certain video scene. The scene consists of a conversation between three

people sitting at a table. No change in the background and no movement of
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Figure 3.4. Ethernet measurements for a local area network traffic at Bellcore, Morris-
town, New Jersey (August 1989).

the camera exist. The codec that was used is called variable-bit-rate (VBR).

This data was gathered in 1991 by engineers at Siemens, Munich, Germany

(see [14, 15] and [5]). Application of the optimization method to this data

results in E = 6.74 × 10−3. Since this value is greater than 10−3, the optimiza-

tion method declares that this data is not second-order self-similar, in agreement

with what we already know.
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Data Nile BC VBR

EK(Ĥ) 2.15 ×10−4 1.15 ×10−4 6.74× 10−3

Table 3.1. A summary of the results of the application of the optimization method to
different sets of real data.

3.4. Summary

In this chapter, we have presented a new tool to test for long-range depen-

dence parameter in network traffic. We applied the new method, which we called

the optimization method, to pseudo random data and various real data that is

known to be long-range dependent. The optimization method was shown to suc-

cessfully answer the question of whether the process under study follows the given

model or not.

In what follows, we present a summary of the optimization method for the

second-order self-similar case, while noting that the fractional ARIMA case is

similar.

• Let X1, X2, . . . , Xn be a realization of a Gaussian process,

• Compute ρ̂n(k) as in (2.15),

• Compute the error function EK(H) as in (3.1),

• Let EK(Ĥ) = e, where Ĥ is the minimizer of the error function,
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Figure 3.5. VBR data: the number of ATM cells per frame, gathered at Siemens,
Munich, Germany.

• If e < 10−3, then the process is second-order self-similar with self-similarity

parameter Ĥ, (or use the method of Chapter 4 for more accurate results).

Otherwise, the process is not, or the data is not sufficient (n and K are not

large enough) to make the right judgment.

In the following chapter, we consider the case when the long-range dependence

structure is given, where the question is reduced to estimating the corresponding

parameter.
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CHAPTER 4

ESTIMATION OF THE LONG-RANGE DEPENDENCE

PARAMETER

4.1. Introduction and Formulation

Many real processes possess the long-range dependent characteristics dis-

cussed in Chapter 2. In fact, some processes were shown to follow a particular

model. In particular, we mention the results of Leland et al. [24], where it was

shown that local area network (LAN) traffic is exactly second-order self-similar.

Thus, knowledge of the Hurst parameter determines the second-order character-

istics of such traffic. With this as motivation, we formulate the ideas of this

chapter as follows.

Suppose that the process Xi is known to follow a particular model. Then the

use of a one-lag autocorrelation function is justifiable, i.e., K = 1 in (3.1). In

this case, the error function can be rewritten as

E1(β) = [ρ(1)− ρ̂n(1)]2. (4.1)

This provides further simplifications of the optimization method. Mainly, it al-

lows us to obtain theoretical confidence intervals of the estimated long-range

dependence parameter β̂ and makes the method much faster.
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In the following two sections we discuss the two typical models for a long-range

dependent process Xi. We discuss in Section 4.2 the case when Xi is second-order

self-similar. The case when Xi is fractional ARIMA is discussed in Section 4.3.

We then consider some examples to illustrate the use of the method on both

artificial and real data and provide a comparison with the wavelet method in

Section 4.4.

4.2. Second-Order Self-Similar Case

Suppose that Xi is known to be second-order self-similar. Then from (2.5)

ρ(1) = 22H−1 − 1, (4.2)

and ρ̂n(1) is the one-lag sample autocorrelation function of the process as de-

scribed in Section 2.6. Note that the global minimum of the error function E1(H)

is attained and it is zero. The global minimizer is

Ĥn =
1

2

[
1 + log2(1 + ρ̂n(1))

]
, (4.3)

which is the estimated Hurst parameter of the process Xi.

This simple relationship between Ĥ and ρ̂n(1) makes it sufficient to work with

the latter to obtain statistical properties of the former. We can also obtain the

asymptotic distribution of Ĥ assisted with what we know about that of ρ̂(1).

Note that, in this case, if ρ̂n(1) is N(µn, σ
2
n), then Ĥ has the following probability
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density function:

fĤ(ĥ) =
4ĥ log 2√

2πσn

exp{(22ĥ−1 − 1− µn)2

−2σ2
n

}· (4.4)

In the case when H ∈ (0, 3
4
), from Theorem 2.6.1, (2.19), and (2.21), the one-

lag sample autocorrelation function ρ̂n(1) is asymptotically normally distributed

with mean

µn = ρ(1)− (1− ρ(1))n2H−2, (4.5)

and variance given by (knowing that the autocorrelation function is an even

function)

σ2
n =

1

n
{(1 + 3ρ2(1))

+2
∞∑

k=1

[
(1 + 2ρ2(1))ρ2(k) + ρ(k − 1)ρ(k + 1)− 4ρ(1)ρ(k − 1)ρ(k)

]
}

≈ 1

n
{(1 + 3ρ2(1))

+2
K∑

k=1

[
(1 + 2ρ2(1))ρ2(k) + ρ(k − 1)ρ(k + 1)− 4ρ(1)ρ(k − 1)ρ(k)

]

+
[
2H(2H − 1)(1− ρ(1))

]2[
ζ(4− 4H)−

K∑

k=1

k4H−4
]
}, (4.6)

where K is a sufficiently large number for which an approximate equality holds

in (2.10) and ζ(·) is the zeta function, defined as

ζ(x) =
∞∑

k=1

k−x.

A plot of σ2
n as a function of the Hurst parameter H, with K = 107 in (4.6), is

given in Figure 4.1. In the case when H = 3
4
, from (2.19) and (2.21), the one-lag

sample autocorrelation function is asymptotically normally distributed with the

same mean as in (4.5) and variance given by
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σ2
n =

log n

n
[4H(2H − 1)(1 + ρ(1))]2

=
9

2

log n

n
when H = 3

4
. (4.7)

Thus, to construct the 95% confidence interval of ρ̂n(1) we require

P (| ρ̂n(1)− µn

σn

| ≤ 1.96) = 0.95,

i.e.,

µn − 1.96σn ≤ ρ̂n(1) ≤ µn + 1.96σn

holds with 95% probability. Using (4.3),

h− ≤ Ĥn ≤ h+,

where

h± =
1

2
[1 + log2(1 + ρ(1)− (1− ρ(1))n2H−2 ± 1.96σn)], (4.8)

also holds with 95% probability.

In the case when H ∈ (3
4
, 1), The limiting distribution was found to be non-

normal. The cumulants of which were given in (2.22). Recall that the first and

second cumulants κ1 and κ2 correspond to the value of the mean and variance of

the distribution. Thus, the variance of the limiting distribution of ρ̂n(1) is

σ2
n = (1− ρ(1))2n2H−2κ2, (4.9)

with κ2 as in (2.22), which corresponds to the value of the variance of the lim-

iting distribution. For instance, κ2 = 1.832, 0.518, 0.157 and 0.003 for the values
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H = 0.80, 0.85, 0.90, and 0.95, respectively [18].

Thus, to construct the 95% confidence interval of ρ̂n(1) we assume normality

and proceed as in the previous case of H ∈ (0, 3
4
).
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Figure 4.1. A plot of nσ2
n as a function of the Hurst parameter H, in the second-order

self-similar case.

4.2.1. Comments on the Confidence Intervals

For known H, the 95% confidence interval of the estimate Ĥn is [h−, h+], with

h− and h+ as in (4.8), with σn as in Figure 4.1 if H ∈ (0, 3
4
), as in (4.7) if H = 3

4
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Figure 4.2. A plot of the width of the 95% confidence intervals for different H values

and as in (4.9) if H ∈ (3
4
, 1). Let wn denote the width of such intervals, i.e.,

wn = h+ − h− (4.10)

= log4

1 + ρ(1)− (1− ρ(1))n2H−2 + 1.96σn

1 + ρ(1)− (1− ρ(1))n2H−2 − 1.96σn

· (4.11)

A log-log plot of wn versus the number of samples n is given in Figure 4.2 for

different values of H. It is remarkable to see the plot resembling a straight line

for each value of H. Thus, the width wn can be written as

wn ≈ an−b, (4.12)

where a and b are constants for fixed H. The values of these constants are given
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in Table 4.1.

It is interesting to note that the width wn is upper bounded by the value of

wn at H = 0.74. Hence in the case when H is not known (which is the typical

case with real data), we choose the confidence interval centered around Ĥn with

width

wn =
5√
n
· (4.13)

4.2.2. Summary of the Algorithm

In what follows, we present a summary of the new method:

• Let X1, X2, . . . , Xn be a realization of a Gaussian second-order self-similar

process,

• Compute ρ̂n(1) as in (2.15),

• Compute Ĥn as in (4.3), which is the estimated Hurst parameter,

• The 95% confidence interval of H is centered around the estimate Ĥn with

width as in (4.13).

4.3. Fractional ARIMA(0,d,0) Case

Suppose on the other hand, that Xi is known to be a fractional ARIMA(0, d, 0)

process. Then from (2.8)

ρ(1) =
d

1− d
,
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H a b

0.10 3.65 0.50

0.20 3.44 0.50

0.30 3.28 0.50

0.40 3.08 0.50

0.50 2.85 0.50

0.60 2.65 0.50

0.70 2.92 0.50

0.74 5.00 0.50

0.75 1.63 0.45

0.80 1.28 0.40

0.90 0.18 0.21

Table 4.1. The values of the constants a and b in (4.12) for each value of H.
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and ρ̂n(1) is the one-lag sample autocorrelation function of the process as de-

scribed in Section 2.6. Note that, as in the second-order self-similar case, the

global minimum of the error function E1(d) is attained and it is zero. The global

minimizer is

d̂ =
ρ̂n(1)

1 + ρ̂n(1)
, (4.14)

which is the estimated parameter of the process Xi.

As in the second-order self-similar case, this simple relationship between d̂ and

ρ̂n(1) makes it sufficient to work with the latter to obtain statistical properties

of the former. We can also obtain the asymptotic distribution of d̂ assisted with

what we know about that of ρ̂(1). Note that, in this case, if ρ̂n(1) is N(µn, σ2
n),

then d̂ has the following probability density function.

fd̂(d̂) =
1√

2πσn(1− d̂)2
exp{((1 + µn)d̂− µn)2

−2σ2
n(1− d̂)2

}· (4.15)

In the case when d ∈ (−1
2

, 1
4
), from (2.19) and (2.21), the one-lag sample

autocorrelation function is asymptotically normally distributed with mean

µn = ρ(1)− (1− ρ(1))n2d−1, (4.16)

and variance given by (This result follows from that obtained by Hosking [18]

where he applied Dougall’s formula to (2.21) together with properties of the

gamma function.)

σ2
n =

Γ(1− 4d)Γ4(1− d)(1− 3d)

nΓ4(1− 2d)(1− 2d)(1− d)2
· (4.17)

A plot of nσ2
n as a function of the difference parameter d, is given in Figure 4.3.

In the case when d = 1
4
, from (2.19) and (2.21), the one-lag sample autocorrelation
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function is asymptotically normally distributed with the same mean as in (4.16)

and variance given by

σ2
n =

log n

n

[
2(1− 2d)Γ(1− d)

(1− d)Γ(d)

]2

≈ 0.305
log n

n
when d = 1

4
· (4.18)

Thus, to construct the 95% confidence interval of ρ̂n(1) we require

P (| ρ̂n(1)− µn

σn

| ≤ 1.96) = 0.95,

i.e.,

µn − 1.96σn ≤ ρ̂n(1) ≤ µn + 1.96σn

holds with 95% probability. Using (4.14),

d− ≤ d̂n ≤ d+,

where

d± =
ρ(1)− (1− ρ(1))n2d−1 ± 1.96σn

1 + ρ(1)− (1− ρ(1))n2d−1 ± 1.96σn

, (4.19)

also holds with 95% probability.

In the case when d ∈ (1
4
, 1

2
), the limiting distribution was found to be non-

normal. The cumulants of which were given in (2.22). Recall that the first

and second cumulants κ1 and κ2 correspond to the mean and variance of the

distribution. Thus, the variance of the limiting distribution of ρ̂n(1) is

σ2
n = (1− ρ(1))2n2d−1κ2, (4.20)
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where κ2 as in (2.22), which corresponds to the value of the variance of the lim-

iting distribution. For instance, κ2 = 1.497, 0.433, 0.136 and 0.027 for the values

d = 0.30, 0.35, 0.40 and 0.45, respectively [18].

Thus, to construct the 95% confidence interval of ρ̂n(1) we assume normality

and proceed as in the previous case of d ∈ (−1
2

, 1
4
).
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Figure 4.3. A plot of nσ2
n as a function of the difference parameter d for the fractional

ARIMA(0, d, 0) case.
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4.3.1. Comments on the Confidence Intervals

For known d, the 95% confidence interval of the estimate d̂n is [d−, d+], with

d− and d+ as in (4.19), with σn as in Figure 4.3 if d ∈ (−1
2

, 1
4
), as in (4.18) if d = 1

4

and as in (4.20) if d ∈ (3
4
, 1). Let wn denote the width of such intervals, i.e.,

wn = d+ − d− (4.21)

=
3.92σn

(1 + ρ(1)− (1− ρ(1))n2d−1)2 − 3.84σ2
n

· (4.22)

A log-log plot of wn versus the number of samples n is given in Figure 4.4 for

different values of d. As in the second-order self-similar case, it is remarkable to
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see the plot resembling a straight line for each value of d. Thus, the width wn

can be written as

wn ≈ an−b, (4.23)

where a and b are constants for fixed d value. The values of these constants are

given in Table 4.2.

It is interesting to note that the width wn is upper bounded by the value of

wn at d = −0.4. Hence in the case when d is not known (which is the typical

case with real data), we choose the confidence interval centered around d̂n with

width

wn =
6.67√

n
. (4.24)

4.3.2. Summary of the Algorithm

In what follows, we present a summary of the new method:

• Let X1, X2, . . . , Xn be a realization of a fractional ARIMA(0, d, 0) process,

• Compute ρ̂n(1) as in (2.15),

• Compute d̂n as in (4.14), which is the estimated difference parameter,

• The 95% confidence interval of d is centered around the estimate d̂n with

width as in (4.24).
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d a b

-0.40 6.67 0.50

-0.30 5.96 0.50

-0.20 5.26 0.50

-0.10 4.59 0.50

0.00 3.98 0.50

0.10 3.48 0.50

0.20 3.55 0.50

0.24 6.04 0.50

0.25 2.33 0.45

0.30 1.50 0.41

0.40 0.21 0.21

Table 4.2. The values of the constants a and b in (4.23) for different d values.
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4.4. Illustrative Examples

In this section, we apply the optimization method and the wavelet method to

second-order self-similar artificial data (Section 4.4.1), real data (Section 4.4.2),

and compare the results. In all analyses to follow, we use the wavelet method

with three vanishing moments.

4.4.1. Second-Order Self-Similar Artificial Data

For each H = 0.10, 0.20, . . . , 0.90, we generate 100 realizations of a fractional

Gaussian noise with the corresponding nominal values H = 0.10, 0.20, . . . , 0.90.

The length of each realization is n = 4000 points. For a given estimation

method, we obtain L = 100 estimated values of H. Call these estimates Ĥ(k)
n ,

k = 1, 2, . . . , 100. We compute their sample mean and compare it to the corre-

sponding nominal H value.

We then compute empirical 95% confidence intervals of the estimates so that

95 of the estimates Ĥ(k)
n fall in this interval. We also provide the theoretical 95%

confidence intervals of the estimates resulted through the optimization method as

described in Sections 4.2.2 and 4.2.2 for the sake of comparison with the empirical

ones. The result of the application of the optimization and the wavelet methods

to these data sets is given in Tables 4.3 and 4.4, respectively.
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From both Tables 4.3 and 4.4, it is observed that the confidence intervals

obtained through the optimization method CIo are narrower than those obtained

through the wavelet method. The width of the empirical confidence intervals

for the optimization method is about 0.05 versus 0.11 to 0.13 for those obtained

through the wavelet method.

The theoretical and actual confidence intervals are almost the same for the

optimization method. This similarity holds even for H ≥ 0.80, where we assumed

normality although we knew that the distribution of ρ̂n is not normal.

For H < 0.80, we see that the mean of the estimated Hurst parameter ob-

tained by the optimization method Ĥn is the same as the true value H. For

H < 0.40, the mean of the estimated Hurst parameter obtained by the wavelet

method Ĥw is far from the true H and the latter does not fall in the 95% con-

fidence interval. For 0.40 ≤ H ≤ 0.70, the mean of Ĥw
n is closer to H and the

theoretical confidence intervals contain the true value.

For H = 0.80, the optimization method underestimates the true value, with

the mean of the estimates Ĥn being 0.79. The wavelet method, on the other hand,

overestimates the true Hurst parameter value by the same quantity, namely the

mean of the estimates Ĥw
n is 0.81. For H = 0.90, the estimates produced by the

wavelet method overestimate the true value by the same quantity, namely the

mean of the estimates Ĥw
n is 0.91. The optimization method, on the other hand,
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underestimates H, with the mean of the estimates Ĥn being 0.87. In this case,

on average, Ĥw
n are closer to the true value than Ĥn. However, the empirical

confidence intervals of the wavelets are much larger than those of the optimiza-

tion method, with the width of the former is almost double the latter. It is also

worth noting that for H > 0.20, the confidence intervals of the estimates from the

optimization method are contained in those resulted through the wavelet method.

The number of flops is 2.5 × 104 for the optimization method and 1.3 × 107

for the wavelet method. Thus, the former is 520 times faster than the latter.

In general, it is apparent that the optimization method gives more accurate and

reliable results and is much faster than the wavelet method.

4.4.2. Real Data

In this section, we apply both methods to the standard measurements dis-

cussed in Section 3.3.3, the Nile river data (Figure 3.3), and Bellcore data (Fig-

ure 3.4). A summary of the application of both methods is provided in Table 4.5.

An application of the wavelet method to the Nile river data results in the

estimated Hurst parameter Ĥ = 0.81 with 95% confidence interval [0.63, 0.98].

The optimization method, on the other hand, results in Ĥ = 0.83 with 95% confi-

dence interval [0.73, 0.93]. We note that the variance-time, R/S and periodogram

methods resulted in Ĥ = 0.87, 0.94, 0.84, respectively [5].
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H Mean of Ĥn Theoretical CIo Empirical CIo

0.10 0.10 [0.07,0.13] [0.07,0.13]

0.20 0.20 [0.17,0.23] [0.17,0.23]

0.30 0.30 [0.27,0.33] [0.27,0.32]

0.40 0.40 [0.38,0.42] [0.37,0.43]

0.50 0.50 [0.48,0.52] [0.47,0.52]

0.60 0.60 [0.58,0.62] [0.58,0.63]

0.70 0.70 [0.68,0.72] [0.68,0.72]

0.80 0.79 [0.77,0.81] [0.77,0.82]

0.90 0.87 [0.86,0.90] [0.85,0.90]

Table 4.3. Results of empirical and theoretical study of the optimization method using
100 independent realizations.
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H Mean of Ĥw
n Empirical CIw

0.10 0.00 [-0.05,0.06]

0.20 0.16 [0.10,0.22]

0.30 0.28 [0.21,0.34]

0.40 0.39 [0.32,0.44]

0.50 0.50 [0.44,0.56]

0.60 0.60 [0.55,0.67]

0.70 0.70 [0.65,0.75]

0.80 0.81 [0.75,0.87]

0.90 0.91 [0.84,0.95]

Table 4.4. Results of empirical study of the wavelet method using 100 independent
realizations.

Data Ĥn CIo Ĥw
n CIw

Nile 0.83 [0.73,0.93] 0.81 [0.63,0.98]

BC 0.81 [0.78,0.84] 0.79 [0.75,0.82]

Table 4.5. A summary of the results of the application of the optimization and wavelet
methods to different sets of real data.
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Passing the Bellcore data through the wavelet method gives Ĥ = 0.79 with a

relatively small 95% confidence interval of [0.75, 0.82]. The optimization method,

on the other hand, results in Ĥ = 0.81 with 95% confidence interval [0.78, 0.84].

The variance-time, R/S, and periodogram methods resulted in Ĥ = 0.80, 0.79, 0.82,

respectively [24].

In short, it is clear that the optimization method and the wavelet method give

close estimates in the first two cases. The estimates in the third case are not close,

but that of the optimization and variance-time methods are close enough. It is

also noted that in all cases considered in this section, the optimization method’s

estimates fall in the 95% confidence intervals of the wavelet method. Moreover,

the confidence intervals of the optimization method are contained in these of the

wavelet method.

4.5. Summary

In this chapter, we have presented a new tool to estimate the long-range de-

pendence parameter in local area network traffic. We considered the two models

of long-range dependence: Second-order self-similar and fractional ARIMA pro-

cesses. A summary of the algorithm for both models is presented in Sections 4.2.2

and 4.3.2, respectively.
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The confidence intervals and biasedness of the estimates from this new method

are obtained. This new method is then applied to pseudo-random data and to

real LAN traffic data. We compared the performance of the new method to that

of the widely-used wavelet method. We demonstrated that the former is much

faster and produces smaller confidence intervals of the Hurst parameter estimates.

Furthermore, the confidence intervals of the estimates from the new method were

shown to be contained in the confidence intervals of the wavelet method. The

width of these confidence intervals was shown to decay hyperbolically with re-

spect to the number of sample points.

In view of the above, we believe that this method can be used as an on-line

estimation tool for H and thus be exploited in the new TCP algorithms that

exploit the known self-similar (and therefore long-range dependent) nature of

network traffic. We mention for example, TCP – Traffic Prediction proposed

in [13].
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CHAPTER 5

SUMMARY AND CONCLUDING REMARKS

In this thesis, we have presented a new tool to decide whether or not a process

has a given parametric correlation structure. The cutoff value of the error func-

tion to decide whether the given process follows the prescribed model or not was

found empirically so that the probability of false alarm is less than 0.05. The new

method is tested on pseudo random data over various ranges of the long-range

dependence parameter and on real data. The new method was shown to success-

fully answer the question of whether the studied process follows the prescribed

model or not.

In the case when the data is known to have a given parametric correlation

structure, we have developed a new parameter estimation method. This method

allows us to obtain the distribution and confidence intervals of the estimate. The

width of these confidence intervals was shown to decay hyperbolically with re-

spect to the number of sample points. We applied the optimization method to

pseudo random data to estimate the Hurst parameter of the process. We then

compared the performance of the optimization method with that of the wavelet

method. This comparison demonstrated that the optimization method produced

more accurate and more reliable results than the wavelet method. Moreover, the

optimization method was also shown to be much faster than the wavelet method.
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In view of the above, we believe that the optimization method can be used as

an on-line estimation tool for H and thus be exploited in the new TCP algorithms

that exploit the known self-similar (and therefore long-range dependent) nature

of network traffic. We mention, for example, TCP – Traffic Prediction proposed

in [13]. On the other hand, it would be of interest to use the new method to find

the variables affecting the long-range dependence parameter β (e.g., number of

users, amount of data, relation between current TCP algorithms and β, topology

of the network, etc.)

If the traffic is believed to exhibit both short and long-range dependence, then

this traffic can be thought of as a sum of two processes: A short-range dependent

process and a long-range dependent process. In this case, an extension of the

new method can be considered to test the validity of the model and estimate the

corresponding parameters.

More recent results suggest that wide area network traffic is multifractal [7].

In short, a multifractal process is a long-range dependent process with parameter

β(t) that is a function of time. Thus, such process is not stationary. The case

when β(t) = β is a constant is referred to as “monofractal,” which we have been

dealing with throughout this thesis. Hence, for a multifractal process, the auto-

correlation function is a function of time too. The function β(t) is commonly

taken to be piecewise constant. In such case, the optimization method is still

applicable on the regions where β(t) is constant.
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APPENDIX A

OTHER METHODS IN THE LITERATURE

PROPOSED TO ESTIMATE THE LONG-RANGE

DEPENDENCE PARAMETER

A.1. Introduction

In Section 2.7 we discussed in detail the wavelet method, which is a widely

used method in the Networking community to test for long-range dependence and

estimate the corresponding parameter. In this appendix, we summarize the other

methods proposed so far by different researchers to test the long-range depen-

dence phenomena and estimate its parameter β. We mainly discuss in Sections

A.2 to A.8 the following methods: Rescaled Adjusted Range, Variance-Time,

Residuals of Regression, Higuchi’s, Correlogram, periodogram, and Whittle Es-

timator, respectively.

All these methods (except the variance-time method) are asymptotic in the

sense of (2.10) and (2.11). All the methods (except Whittle estimator) are graph-

ical. An empirical study of the estimates obtained using methods in Section A.2

to A.8 are available in [38].
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A.2. Rescaled Adjusted Range Method

This method is known more simply as the R/S method. It was introduced by

Hurst [19], and it is one of the best known methods. Let Xi, Yn and σ̂2
n be the

increment process, the cumulative process, and the sample mean of Xi as defined

in Section 2.6. The R/S statistic is then given by

R/S(n) =
1

σ̂n

[
max
0≤j≤n

{Y (j)− j

n
Y (n)} − min

0≤j≤n
{Y (j)− j

n
Y (n)}

]
. (A.1)

If Xi is long-range dependent, then

E[R/S(n)] ∼ cnH as n →∞, (A.2)

where c is a positive constant, and H is the Hurst parameter.

Thus, if the process Xi is long-range dependent, a plot of log(E[R/S(n)])

versus log n results in a straight line for large values of n, the sample size. The

slope of this line is the value of H. See [28, 5] for details.

A.3. Variance-Time Analysis

Also known as the aggregated variance method. This method is based on (2.9).

Let X(m) be the aggregated process of the increment process X as defined by (2.6).

Let (σ(m))2 be the variance of this aggregated process and (σ̂(m))2 be its sample
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variance. Since (σ̂(m))2 is an estimate of (σ(m))2, based on (2.9), a log-log plot of

(σ̂(m))2 versus m will result in a straight line with slope β. See [5] for details.

A modification of this method is known as the Absolute Values of the Aggre-

gated Process or Series. In this case, instead of computing the sample variance

(σ̂(m))2, the average of the sum of the absolute values of the aggregated process

is computed, namely

1

N/m

N/m∑

k=1

|X(m)(k)|. (A.3)

It turns out that if the process Xi is long-range dependent, the plot of the

logarithm of the preceding average versus the logarithm of the aggregation level

m results in a line with slope H − 1. See [5] for details.

A.4. Residuals of Regression

This method was suggested by Peng et al. [35]. We first break up the process

Xi into blocks of size m. Then, the partial sums of the series are calculated

within each block. Let Z(j), j = 1, 2, . . . , m, denote these partial sums. Then, fit

a least-squares line to the Z(i) and compute the sample variance of the residuals.
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This procedure is repeated for each of the blocks, and an average of the re-

sulting variances is obtained. Since the blocks have the same size m, this is

equivalent to calculating the sample variance of the entire series Xi. If the pro-

cess Xi is long-range dependent, then a log-log plot of the result versus m results

in a straight line with slope 2H as proven by Taqqu et al. [38].

A.5. Higuchi’s Method

This method was presented by Higuchi [16]. This method involves calculating

the length of a path or its fractal dimension D (see (2.4) for the definition of

D). We first calculate the partial sums Y (j) =
∑j

i=1 Xi (i.e., constructing the

cumulative process from the increment process Xi). Then, we find the normalized

length of the curve, namely

L(m) =
n− 1

m3

m∑

i=1

bn− i

m
c−1

∑
k = 1b(n− i)/mc|Y (i + km)− Y (i + (k − 1)m)|,

(A.4)

Where n is the number of samples, m is the aggregation level or the block size

and bc denotes the greatest integer (floor) function. Then EL(m) ∼ cm−D, where

c is a positive constant and D = 2−H. Hence, as before, a log-log plot EL(m)

versus m produces a straight line of slope D = 2−H.
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A.6. Correlogram

This method is based on (2.10), from which if Xi is long-range dependent, a

log-log plot of the sample correlations of Xi versus the lag k results in a straight

line for large lag values. The slope of this line is −β. See [5] for details.

A.7. Periodogram Method

Let f̂(λ) be the sample spectral density of Xi, namely

f̂(λ) =
1

2πn
|

n∑

j=1

Xje
ijλ|2, (A.5)

where λ is the frequency and n is the number of samples. Then, if Xi is long-

range dependent, based on (2.11), a log-log plot of the f̂(λ) against |λ| gives a

straight line as |λ| approaches the origin. The slope of this line is −α. See [5] for

details.

A.8. Whittle Estimator

This method was first proposed by Whittle [43] in the context of short-range

dependence, see [5] for the application of this method to long-range dependence



65

processes. As the periodogram method, this method is also based on (2.11).

Define

Q(η) =
∫ π

−π

f̂(λ)

f(λ; η)
dλ, (A.6)

where f(λ; η) is the spectral density at frequency λ, and the vector of unknown

parameters η (in our case, this is a scaler equals H for second-order self-similar

case and d for fractional ARIMA(0, d, 0) case,) and f̂(λ) is the sample spectral

density. The integral in (A.6) can be replaced by the sum over the frequencies

2π
n

, 4π
n

, . . . , 2(n−1)π
n

. The estimator of η denoted by η̂ is chosen to minimize the

function Q(η). The variance of the estimator is then 4π
n

Q(η̂).
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APPENDIX B

PROGRAMS

In this Appendix we provide MATLAB program files that can be used to

incorporate the ideas illustrated in this thesis.

B.1. Pseudo Random Number Generator

B.1.1. Second-Order Self-Similar Case

function R = Rho(h,N)

% function R = Rho(h,N)

% This code constructs an NxN covariance matrix R

% which is second-order self-similar.

% h is the Hurst parameter,

% N is the number of data points

% The resultant R is to be used at "mvnrnd" command

H = 2*h;

k = 1:N;

c = 0.5*((k+1).^H-2*k.^H+(k-1).^H);

c = [1 c];

R = toeplitz(c);
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B.1.2. Fractional ARIMA(0, d, 0) Case

function R = Rho2(d,N)

% function R = Rho2(d,N)

% This code constructs an NxN covariance matrix R

% which is fractional ARIMA(0,d,0).

% d is the difference parameter,

% N is the number of data points

% The resultant R is to be used at "mvnrnd" command

k=1:N;

c = gammaln(k+d)-gammaln(1+k-d);

c = (gamma(1-d)/gamma(d))*exp(c);

c = [1 c];

R = toeplitz(c);

B.2. Testing Method

B.2.1. Second-Order Self-Similar Case

function [H,E] = hurst2(X)

% Given Nx1 observation vector X vector of observations

% in bytes or packets, this code checks whether the given

% process is soss and finds its Hurst parameter H

% by picking H minimizing the sum of the squares of the
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% difference of the sample covariances of observations and the model.

mu = mean(X);

N = length(X);

Xmu = X-mu; %centering X around the mean mu

%we could go all the way to n,

%but we are trying to reduce the "edge effect"

K = 50; % This may be varied

for i=0:K

c(i+1) = sum(Xmu(1:N-i).*Xmu(i+1:N))/(length(Xmu(1:N-i))-1);

end %c(N) = cov(N-1), where cov is the covariance of X

h = .01:.01:1; %the stepsize .01 is arbitrary

nc = length(c)-1;

for k =1:nc

rho = c(k+1)/c(1);

f(k,:) = (((1/2).*((k+1).^(2.*h)-2.*k.^(2.*h)+(k-1).^(2.*h))-rho).^2);

end

f = sum(f);

[minf,lo] = min(f);

H = lo/100;

E = minf/(4*K);

% The condition is that E < 0.001, otherwise X is not soss.

The following code is used to determine the empirical cutoff e in Figure 3.1.
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% This code provides the cutoff e for the specified

% probability of false alarm in soss case.

N = 4000; % Number of data points

L = 10000; % Number of realizations

ii=0;

for h=0.12:0.01:0.99

clear H E R X

h

R = Rho(h,N-1); X = mvnrnd(zeros(1,N), R,L);

for i=1:L

[H(i),E(i)] = hurst2(X(i,:));

end

E = sort(E);

ii=ii+1;

e(ii) = E(.95*L) % e is chosen so that P_FA < 0.05

end

B.2.2. Fractional ARIMA(0, d, 0) Case

function [D,E] = farima2(X)
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% Given Nx1 observation vector X vector of observations

% in bytes or packets, this code checks whether the given

% process is fractional ARIMA(0,d,0) and finds its difference parameter d

% by picking d minimizing the sum of the squares of the

% difference of the sample covariances of observations and the model.

mu = mean(X);

N = length(X);

Xmu = X-mu; %centering X around the mean mu

%we could go all the way to n,

%but we are trying to reduce the "edge effect"

K = 50; %.01*N;

for i=0:K

c(i+1) = sum(Xmu(1:N-i).*Xmu(i+1:N))/(length(Xmu(1:N-i))-1);

end %c(N) = gamma(N-1), where gamma is the covariance of X

d = -.49:.01:0.50; %the stepsize .01 is arbitrary

nc = length(c)-1;

for k =1:nc

rho = c(k+1)/c(1);

f(k,:) = ((gamma(1-d).*gamma(k+d))./(gamma(d).*gamma(1+k-d))-rho).^2;

end

f = sum(f);

[minf,lo] = min(f);

D = d(lo);
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E = minf/(4*K);

% The condition is that E < 0.001, otherwise X is not farima(0,d,0).

The following code is used to determine the empirical cutoff e in Figure 3.2.

% This code provides the cutoff e for the specified

% probability of false alarm in farima(0,d,0) case.

N = 4000; % Number of data points

L = 10000; % Number of realizations

ii=0;

for d=-.38:0.01:0.49

d

clear R X

R = Rho2(d,N-1); X = mvnrnd(zeros(1,N), R,L);

for i=1:L

[D(i),E(i)] = farima2(X(i,:));

end

E = sort(E);

ii=ii+1;

e1(ii) = E(0.95*L)

end
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B.3. Estimation Method

B.3.1. Second-Order Self-Similar Case

% function [H,CI] = hurst(X)

% Given Nx1 observation vector X vector of observations

% in bytes or packets, this code finds the Hurst parameter H

% of the process which is assumed to be soss.

% This code is a modified version of hurst2.m code,

% It checks cov(1) only to deduce H.

function [H,rho] = hurst(X)

mu = mean(X);

n = length(X);

Xmu = X-mu; %centering X around the mean mu

c0 = sum(Xmu.*Xmu)/(n); % Variance

c1 = sum(Xmu(1:n-1).*Xmu(2:n))/(n); % cov(1)

rho = c1/c0; % autocorrelation of the process

H = .5*(1+log(1+c1/c0)/log(2));

CI = 5/sqrt(n);

B.3.2. Fractional ARIMA(0, d, 0) Case

% function [d,CI] = farima(X)

% Given Nx1 observation vector X vector of observations

% in bytes or packets, this code finds the difference parameter d
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% of the process which is assumed to be fractional ARIMA(0,d,0).

% This code is a modified version of hurst2.m code,

% It checks cov(1) only to deduce d.

function [d,rho] = farima(X)

mu = mean(X);

n = length(X);

Xmu = X-mu; %centering X around the mean mu

c0 = sum(Xmu.*Xmu)/(n); % Variance

c1 = sum(Xmu(1:n-1).*Xmu(2:n))/(n); % cov(1)

rho = c1/c0; % autocorrelation of the process

d = rho/(1+rho);

CI = 6.67/sqrt(n);
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