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1. Introduction

The most well-known models of long-range dependent
processes are fractional Gaussian noise [7] (thus second-
order self-similarity) and fractional ARIMA [3, 4]. Each of
these models has a corresponding long-range dependence
parameter. Since the value of the parameter indicates the in-
tensity of this dependence structure, it is important to have
a better tool to estimate it. Such an estimator should not
be biased and the confidence intervals should be as small as
possible. Moreover, if we would like to estimate the para-
meter on-line, then the estimation tool should be as fast as
possible.

Several methods for estimating long-range dependence
parameters have been proposed; see [2] for details. By
far, the wavelet method is the most widely used. When a
process is assumed to be second-order self-similar, [6] in-
troduced a new method that uses the structure of the covari-
ance function to estimate the Hurst parameter. The method
was shown to be much faster and yield smaller confidence
intervals than the wavelet method. In this paper, we con-
sider the case when the process is assumed to be fractional
ARIMA and show that the new method still possesses the
aforementioned qualities.

2. Preliminaries

Let Xi denote the number of bits, bytes, or packets seen
during theith interval. We say thatXi is second-order sta-
tionary if its meanE(Xi) does not depend oni and if the
autocovariance functionE[(Xi−E(Xi))(Xj−E(Xj))] de-
pends oni andj only through their differencek = i− j, in
which case we writeγ(k) = E[(Xi+k − E(Xi+k))(Xi −
E(Xi))]. We then putσ2 = γ(0) = E[(Xi − E(Xi))2],
andρ(k) = γ(k)

σ2 , to denote the variance and autocorrela-
tion function of the processXi, respectively.

The fractional ARIMA(p, d, q) process proposed
in [3, 4] is an extension of the ARIMA(p, d, q) in the
sense thatd is allowed to take any real value in the interval
(− 1

2 , 1
2 ). Any fractional ARIMA(p, d, q) process can be ex-

pressed in terms of thestandardfractional ARIMA(0, d, 0).
The autocorrelation function of the latter is given by

ρ(k) =
k∏

i=1

k − i + d

k − i + 1− d
· (1)

3. Main Result

Given observed dataX1, . . . , Xn, let µ̂n =
n−1

∑n
i=1 Xi, γ̂n(k) = 1

n

∑n−k
i=1 (Xi − µ̂n)(Xi+k − µ̂n),

σ̂2
n = γ̂n(0), and

ρ̂n(k) =
γ̂n(k)
σ̂2

n

, (2)

denote thesample mean, thesample covariance, thesample
variance, and thesample autocorrelation, respectively.

Suppose that Xi is known to be fractional
ARIMA( 0, d, 0). Then from (1) we haveρ(1) = d/(1− d).
Thus, we propose

d̂ =
ρ̂n(1)

1 + ρ̂n(1)
, (3)

as an estimate of the difference parameter of the processXi.
To assess the performance of the proposed estimate,

we appeal to the following result due to Anderson [1] and
Hosking [5].

Theorem: Let Xi be a fractional ARIMA(0, d, 0) process.
If the process is Gaussian, then for large sample sizen,
ρ̂n(1) has mean

µn = ρ(1)− (1− 2d)
d(1− d)(1 + 2d)

Γ(1− d)
Γ(d)

n2d−1,

1



and

1. If d ∈ (− 1
2 , 1

4 ), thenρ̂n(1) is approximately N(µn, σ2
n)

with

σ2
n =

2
n

[
1− 2d

1− d

]2

, (4)

2. If d = 1
4 , thenρ̂n(1) is approximately N(µn, σ2

n) with

σ2
n =

[
2(1− 2d)Γ(1− d)

(1− d)Γ(d)

]2 log n

n
(5)

3. If d ∈ (1
4 , 1

2 ), then the limiting distribution of̂ρn(1)
has meanµn and variance given by

σ2
n = 2

[
(1− 2d)Γ(1− d)

(1− d)Γ(d)

]2

K2(d)n4d−2, (6)

whereK2(d) is related to the variance of the modified
Rosenblatt distribution and is given by

K2(H) =
∫ 1

0

∫ 1

0

g2(x, y)dxdy,

where

g(x, y) = |x−y|2d−1− 1

2d
(x2d+y2d+(1−x)2d+(1−y)2d)+

1

d(2d + 1)
·

With σ2
n given by the theorem, we haved− ≤ d̂n ≤ d+,

with 95% probability, where

d± =
µn ± 1.96σn

1 + µn ± 1.96σn
. (7)

Now, for knownd, the 95% confidence interval of the
estimated̂n is [d−, d+]. Next, letwn denote the width of
such intervals, i.e.,wn = d+ − d−· A log-log plot of wn

versus the number of samplesn for different values ofd
resembles straightlines. Thus, the widthwn can be written
as

wn ≈ an−b, (8)

wherea andb are constants for fixedd value. The values of
these constants are given in Table 1.

It is interesting to note that the widthwn is upper
bounded by thewn at the valued = −0.40. Hence in the
case whend is not known, we choose the confidence inter-
val centered around̂dn with width

wn =
15√
n

. (9)

d a b

-0.40 14.88 0.50
-0.30 11.53 0.50
-0.20 9.32 0.50
-0.10 7.33 0.50
0.00 5.57 0.50
0.10 4.05 0.50
0.20 2.79 0.50
0.25 1.92 0.45
0.30 1.51 0.41
0.40 0.21 0.21

Table 1. The values of the constants a and b
in (8) for different d values.

4. Summary of the Algorithm

In what follows, we present a summary of the new
method:

• Let X1, X2, . . . , Xn be a realization of a fractional
ARIMA( 0, d, 0) process,

• Computeρ̂n(1) as in (2),

• Computed̂n as in (3), which is the estimated difference
parameter,

• The 95% confidence interval ofd is centered around
the estimatêdn with width as in (9).

We have compared our proposed method with the
wavelet method using simulated fractional ARIMA data
and real data. We found that our proposed method is
much faster and yields smaller confidence intervals than the
wavelet method. Similar conclusions were made for our
similar method for fractional Gaussian noise data [6].
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