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Abstract

Unlike the classical deterministic digital circuit analy-
sis, we consider a Monte Carlo simulation in the con-
text of uncertain digital circuits. In other words, given
a binary function ofn uncertain input binary vari-
ables, we express the probability of this binary func-
tion in terms of the probabilities of the corresponding
input binary variables. This in turn, allows us to es-
timate appropriate probabilistic measure of the output
of a digital circuit with uncertain input parameters.

1 Introduction

The theory of deterministic digital circuits has been
studied extensively — See [4] for example. Typically,
a binary variablexj is allowed to take only two
values; 0 and 1. A binary function of n binary
variablesf(xn, xn−1, . . . , x1), is also allowed to take
only the values 0 and 1.

The introduction of uncertainty in digital circuits
has been used in different areas to model complex
systems. For example, see [6] for the introduction of
probabilistic Boolean networks to model gene regu-
latory networks. In such a model, thexj ’s represent
the state of genej, wherexj = 1 denotes the fact
that genej is expressed andxj = 0 means it is not
expressed. The binary functionfj(xn, xn−1, . . . , x1),
on the other hand, is referred to as a predictor, and is
used to determine the value ofxj in terms of some
other gene states.

In this paper, we consider the case when the bi-
nary variablexj is a random variable. Thus, if we
consider a binary function of then random binary
variablesf(xn, xn−1, . . . , x1), then this in turn would
be a random binary variable. In this context, all the
variables under consideration are Bernoulli random
variables since they take only the values 0 and 1.

Hence, throughout this paper, we consider the
case when thexj ’s are independent random variables
with probabilitiesP (xj = 1) = pj = E[xj ]. Next, we
consider the probability or expectation

P .= P (f(xn, xn−1, . . . , x1) = 1).

We then, pose the following questions: Given a logic
function, f(xn, xn−1, . . . , x1), with known probabil-
ities xj ’s, what can we say about the probabilityP?
How can we address the problem of maximizing or
minimizingP? The latter may refer to best case and
worst case scenarios.

The flow of this paper is as follows. In Sec-
tion 2, we present and prove a result that expresses the
probabilityP in terms of the probabilitiespj ’s, with
j = n, n − 1, . . . , 1. Section 3 answers the question
of maximizing and minimizingP. We present a
numerical example in Section 4 to illustrate the ideas
presented in this paper. Finally, a summary and a
suggestion of further research directions is presented
in Section 5.
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2 Stochastic Measures

Suppose the variablesxj ’s are independent random
variables with given probabilitiesP (xj = 1) = pj .
Given a logic function,f(xn, xn−1, . . . , x1), let us de-
fine

P .= P (f(xn, xn−1, . . . , x1) = 1)
= E[f(xn, xn−1, . . . , x1)].

Then what can we say about the probability (or
expectation)P? How can we address the problem of
maximizing or minimizingP?

To answer these questions, let us consider the
following theorem.

2.1 Theorem

Let f(xn, xn−1, . . . , x1) be a binary function ofn in-
dependent binary random variables withP (xj = 1) =
pj . Let I be the set of minterm indices for which
f(xn, xn−1, . . . , x1) is 1. Then

P =
∑

i∈I

n∏

j=1

P (xj = bi2−j+1c − 2bi2−jc). (1)

2.2 Proof of Theorem

We devote this section to proving Theorem 2.1. Let
f(xn, xn−1, . . . , x1) be a binary function ofn vari-
ables. LetI be the set of minterm indices for which
f(xn, xn−1, . . . , x1) is 1. Clearly we have0 ≤ i < 2n

for i ∈ I. Now note that any binary function can be
written as a sum of its minterms — see [4] for details.
Thus, we write

f(xn, xn−1, . . . , x1) =
∑

i∈I

mi,

wheremi is theith minterm.

Let us now write(i)10 = (inin−1 . . . i1)2, where
ij ∈ {0, 1}. Hence, we have

mi = xin
n x

in−1

n−1 . . . xi1
1 =

n∏

j=1

x
ij
j ,

where we adopt the notion thatx0
i = xj ; which is the

complement ofxj , andx1
j = xj . Suppose now that

P (xj = 1) = pj , and let

P .= P (f(xn, xn−1, . . . , x1) = 1).

Now, since the events{mi = 1} are mutually exclu-
sive, we have

P (f(xn, xn−1, . . . , x1) = 1) =
∑

i∈I

P (mi = 1).

Next, note that

P (mi = 1) =
n∏

j=1

P (xj = ij),

sincexj ’s are independent. Now, note that

ij = bi2−j+1c − 2bi2−jc.

A general version of the latter result is proven in [2].
Thus, (1) follows and this concludes the proof.

2.3 Remarks

In Theorem 2.1, the setI consists of those minterms
that are equal to1. Thus, if a minterm is a “don’t-
care,” it will not be included in the sum in (1).
In other words, the index of such a minterm is
not a member ofI. This is the case since, by defini-
tion, a “don’t care” is a condition that does not happen.

On another note, the variance of the binary func-
tion can easily be obtained and is expressed as

V ar[f(xn, xn−1, . . . , x1)] = P − P2.

3 Stochastic Optimization

Suppose that the probabilitiespj can be picked from
intervals Ij = [p−j , p+

j ]. Consequently, the tuple
(p1, p2, . . . , pn) can be picked from the hypercube

I = I1 × I2 × . . .× In.

Then, what value should we set the probabilitiespj to
in order to maximize or minimizeP? To answer this
question, we first introduce the following definition.
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3.1 Essential Variables

A binary variablexk is said to beessentialif the
following condition holds: There does not exist
admissible values of the(n − 1) remaining vari-
ablesxj ∈ Ij , j 6= k making the probabilityP
independent ofxk ∈ Ik.

If xk is essential, it can readily be shown that
the partial derivative∂P/∂pk is non-zero overI.
Hence, by an intermediate value argument, if the
variablexk is essential, the partial derivative∂P/∂pk

has one sign overI. In view of this, let

sk
.= sign

(
∂P
∂pk

)

denote this invariant sign; i.e.,sk is constant overI
having the valuesk = −1 or sk = 1.

The following theorem answers the question posed in
the introduction of this section.

3.2 Theorem

Let P be a function of somepj ’s. Then, for the case
of maximizingP, if the variablexk is essential, then
pickpk = p−k whensk = −1, and pickpk = p+

k when
sk = 1.

For the case of minimizingP, if the variable xk

is essential, then pickpk = p+
k whensk = −1, and

pickpk = p−k whensk = 1.

If xk is not essential, then for either case pick
pk = p−k or pk = p+

k .

3.3 Proof of Theorem

To prove Theorem 3.2 we first note that Theorem 2.1
shows thatP is multilinear in thepi’s. Thus, to
maximize or minimizeP we invoke the well-known
result that a multilinear function on a hypercube is
both maximized and minimized at its vertices —
see [3] for example. Vertex points here are the tuples
(p±1 , p±2 , . . . , p±n ), where p±j stands for the extreme
valuesp−j or p+

j .

Now, if the variablexj is essential, thensj = −1
implies thatP is decreasing with respect topj . Thus,
to maximizeP, we decreasepj , and to minimizeP,
we increasepj . Similarly, sj = 1 implies thatP is
increasing with respect topj . Thus, to maximizeP,
we increasepj , and to minimizeP, we decreasepj .
Sincepj ∈ [p−j , p+

j ], the result of the theorem follows.

4 Numerical Examples

To illustrate the use of the ideas introduced in this pa-
per, we consider two logic functions:

f1(x3, x2, x1) = x3 + x1,

and
f2(x3, x2, x1) = x2x1 + x3x1,

with p1 ∈ [0.4, 0.6], p2 ∈ [0.1, 0.5], and
p3 ∈ [0.2, 0.8].

Let I1 and I2 be the sets of minterm indices for
which f1(x3, x2, x1) = 1 and f2(x3, x2, x1) = 1,
respectively. ThenI1 = {0, 2, 4, 5, 6, 7} and
I2 = {1, 4, 5, 6}. Thus, from (1), we have

P1 = (1− p3)(1− p1) + p3

and
P2 = (1− p2)p1 + (1− p1)p3.

We note here thatP2 can be expressed directly
from the expression off2(x3, x2, x1). This is because
f2(x3, x2, x1) is expressed as the sum of products that
are mutually exclusive. Note that a similar argument
cannot be made with regard tof1(x3, x2, x1).

Now, suppose we would like to maximizeP1.
Then note that bothx1 andx3 are essential with re-
spect tof1 with s

(1)
1 = −1 ands

(1)
3 = 1, respectively.

Thus, the maximumP+
1 is obtained withp1 = 0.4

andp3 = 0.8. Consequently,P+
1 = 0.92.

Suppose now that we would like to minimize
P2. Then note that bothx2 and x3 are essential
with respect tof2 with s

(2)
2 = −1 and s

(2)
3 = 1,

respectively. Thus, the minimumP−2 is obtained with
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p2 = 0.5 andp3 = 0.2. However, the variablex1 is
not essential. Thus, we try both values0.4 and 0.6
for p1, which results inP2 = 0.32 andP2 = 0.38,
respectively. Consequently,P−2 = 0.32.

5 Summary and Further Research

We considered the case of digital circuits with
uncertain input variables. We have presented a proba-
bilistic measure of the output function in terms of the
probabilities of the input. The result is a multilinear
function, which facilitates the optimization problem
of the probability measure of the output.

In what follows, we suggest three research direc-
tions. Firstly, it would be of interest to consider
the case when the input variables are dependent. In
this case, the challenge is that the joint distribution
cannot be expressed as the product of the marginal
distributions. Thus, we have

P =
∑

i∈I

P (xn = in, xn−1 = in−1, . . . , x1 = i1).

The second suggested research direction is in b-ary
logic. Although binary logic is by far the most
practical among any b-ary logic, there is some use
of the trinary (or ternary) logic — see [1] and [5] for
more information. A fundamental issue in this case
is that minterm concept is not properly defined. As a
consequence, the events of the term in which all the
variables appear exactly once may not be mutually
exclusive.

Finally, it would be of interest to broaden the concept
of uncertain digital networks to include uncertain
logic gates and extend the results of this paper to such
case. For example, an uncertain AND gate would have
a corresponding probabilityP (xy = 1) = p. This
in turn, would lead to a new probabilistic Boolean
algebra.
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