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Abstract

Unlike the classical deterministic digital circuit
analysis, we consider the analysis of digital cir-
cuits with uncertain inputs. Thus, given a bi-
nary function ofn uncertain input binary vari-
ables, we introduce a new way of using K-maps
to express the probability of this binary function
in terms of the probabilities of the corresponding
input binary variables. This in turn, allows us to
estimate appropriate probabilistic measure of the
output of a digital circuit with uncertain input pa-
rameters and answer typical questions that arise
in stochastic optimization.

1 Introduction

The theory of deterministic digital circuits has
been studied extensively — See [3] for instance.
Typically, a binary variablexj is allowed to take
only two values;0 and 1. A binary function
of n binary variablesf(xn, xn−1, . . . , x1), is
also allowed to take only the values 0 and 1.
These values may stand for false and true, or
low and high. The latter is implemented through
voltage levels; low for low voltage level, and
high for high voltage level. We typically have
a threshold level that separates the two levels to

avoid uncertainty.

However, due to noise, temperature varia-
tion, signal delay, and other factors, voltage level
can be a random variable. Thus, it makes sense
to consider the case when the binary variablexj

is a random variable too. Furthermore, if we
consider a binary function ofn binary vari-
ablesf(xn, xn−1, . . . , x1), then this in turn would
be a random variable.

The introduction of uncertainty in digital
circuits has been used in different areas to model
complex systems. For example, see [4] for the
introduction of probabilistic Boolean networks
to model gene regulatory networks. In such a
model, thexj ’s represent the state of genej,
where xj = 1 denotes the fact that genej is
expressed andxj = 0 means it is not expressed.
The binary functionfj(xn, xn−1, . . . , x1), on the
other hand, is referred to as a predictor, and is
used to determine the value ofxj in terms of
some other gene states.

Analysis of digital circuits with uncertain inputs
was introduced in [2]. In such analysis, multi-
input mono-output digital networks as depicted in
Figure 1 was studied. The case when the binary
variables xj, j = n, n− 1, . . . , 1, are random



was considered. Thus, a binary function of then
random binary variables,f(xn, xn−1, . . . , x1),
is a Bernoulli random variable. A formula
expressing the probability of the output in terms
of the probabilities of the input variables was
presented in [2]. In this paper, we accomplish
this task by presenting a practical algorithm that
exploits K-maps.

Hence, Throughout this paper, we consider
the case when thexj ’s are independent random
variables with probabilities

P (xj = 1)
.
= pj = E[xj].

Next, we consider the probability or expectation

P .
= P (f(xn, xn−1, . . . , x1) = 1)

= E[f(xn, xn−1, . . . , x1)].

We then pose and answer the following
questions: Given a binary logic function,
f(xn, xn−1, . . . , x1), with known probabilities
pj ’s, what can we say about the probabilityP?
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Figure 1. Network Configuration

The flow of this paper is as follows. In Section 2,
we present and prove a result that expresses the
probability P in terms of the probabilitiespj ’s,
with j = n, n − 1, . . . , 1. To accomplish this
goal, an algorithm that uses K-maps is introduced
in Section 3. We end this paper by presenting a
summary in Section 4.

2 Stochastic Measures

Suppose the binary variablesxj ’s, where
j = n, n− 1, . . . , 1, are independent random
variables with given probabilities

P (xj = 1)
.
= pj = E[xj].

Given a binary logic function of then binary ran-
dom variables,f(xn, xn−1, . . . , x1), let us define

P .
= P (f(xn, xn−1, . . . , x1) = 1)

= E[f(xn, xn−1, . . . , x1)].

ClearlyP is a function of thexj ’s. It would be
of interest, however, to know the exact form of
this function. Such function was presented in [2],
where also the questions of maximizing it or min-
imizing it were addressed. We present the theo-
rem here together with its proof for the sake of
completeness.

2.1 Theorem

Let f(xn, xn−1, . . . , x1) be a binary function of
n independent binary random variables with
P (xj = 1) = pj. Let I be the set of minterm in-
dices for whichf(xn, xn−1, . . . , x1) is 1. Then

P =
∑

i∈I

n∏

j=1

P (xj = bi2−j+1c − 2bi2−jc). (1)

2.2 Proof of Theorem

We devote this section to proving Theorem 2.1.
Let f(xn, xn−1, . . . , x1) be a binary function ofn
variables. LetI be the set of minterm indices for
which f(xn, xn−1, . . . , x1) is 1. Clearly we have
0 ≤ i < 2n for i ∈ I. Now note that any binary
function can be written as a sum of its minterms
— see [3] for details. Thus, we write

f(xn, xn−1, . . . , x1) =
∑

i∈I

mi.
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Let us now write(i)10 = (inin−1 . . . i1)2, where
ij ∈ {0, 1}. Hence, we have

mi = xin
n x

in−1

n−1 . . . xi1
1 =

n∏

j=1

x
ij
j ,

where we adopt the notion thatx0
i = xj; which is

the complement ofxj, andx1
j = xj. Suppose now

thatP (xj = 1) = pj, and let

P .
= P (f(xn, xn−1, . . . , x1) = 1).

Now, since the events{mi = 1} are mutually ex-
clusive, we have

P (f(xn, xn−1, . . . , x1) = 1) =
∑

i∈I

P (mi = 1).

Next, note that

P (mi = 1) =
n∏

j=1

P (xj = ij),

sincexj ’s are independent. Now, by applying the
base conversion theorem [1], we have

ij = bi2−j+1c − 2bi2−jc.
Thus, (1) follows and this concludes the proof.

3 Application of K-Maps

The result of Theorem 2.1 gives a general formula
to relateP to the probabilitiespi. However, it
would be of interest to have a simpler method to
come up with such formula. Fortunately this can
be done by implementing Karnaugh maps.

Karnaugh maps or K-maps for short, were
invented by Maurice Karnaugh, while he was
working as a telecommunications engineer at Bell
Labs in 1953. He was studying the application of
digital logic to the design of telephone circuits.

A K-map is a graphical tool to reduce a Boolean
function to its simplest expression without the

need to go through the headache of Boolean alge-
bra. A K-map is a reorganization of the truth table
in a table of squares or cells. Each cell represents
a minterm. So a K-map forn variables would
have2n cells. See [3] for more details on K-maps.

We say that two cells in a K-map areadja-
cent if they share the same line. The number of
cells combined for a K-map of n variables are in
2m, m = 0, 1, . . . , n. The larger the number the
better, since it would produce a simpler Boolean
expression of the Boolean function in question.
The objective is to have a collection of the largest
groupings of adjacent squares that include 1.2m

such adjacent cells will give a product term of
(n −m) literals. So one cell that has a value one
will give a product term ofn literals which is a
minterm. Similarly,2n adjacent cells that have
the value one will give a product term of0 literals
or a constant1, which means that the function in
question is equal to1.

We can use K-maps to analyze the type of
circuits described in this paper. From the proof of
Theorem 2.1 we can see that one step of the proof
required that the events{mi = 1} be mutually
exclusive. This can be generalized to require the
events of product terms equal one be mutually
exclusive instead. Consequently, this can be
explained K-maps as expanding the groups of
cells as described by Karnaugh but not overlap
these groups.

3.1 Algorithm

In summary, to find the probabilityP of a given
binary functionf , we introduce the following al-
gorithm:

• Gather groups of2m, m = 0, 1, . . . , n, ad-
jacent cells with the largest possiblem such
that such groups do not overlap;

• Write down the corresponding expression of
the binary functionf ; then
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• The expression ofP is similar to that off
with eachxi is replaced bypi and eachxi is
replaced by(1− pi).
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Figure 2. Optimal realization of the function
in example 3.2

3.2 Illustrative Example

To illustrate the ideas of this section, we consider
the following function:

f(x4, x3, x2, x1) =
∑

m(1, 3, 5, 6, 7, 13, 15).

As illustrated in Figure 2, the minimum sum-of-
product form for this function is

f(x4, x3, x2, x1) = x1x4 + x2x4 + x1x2x3.

Now, to findP, we use the K-map in Figure 3. We
gather the maximum grouping of adjacent cells
without overlapping them. Thus, we can rewritef
as the sum of product terms that are mutually ex-
clusive as follows

f(x4, x3, x2, x1) = x2x4 + x1x2x4 + x1x2x3x4.

Hence we get

P = p2p4 + (1− p1)(1− p2)p4
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Figure 3. Optimal realization of the function
in example 3.2 to find the corresponding P

+(1− p1)p2p3(1− p4)

= p4 + p2p3 − p1p4 + p1p2p4 − p2p3p4

−p1p2p3 + p1p2p3p4.

Note that other variations in the selection of the
non-overlapping collections of adjacent squares
will result in the sameP.

4 Summary

We considered the case of digital circuits with
uncertain input variables. We have presented
an algorithm that uses K-maps to analyze such
circuits. This algorithm presents the probability
of the output binary function n terms of the
probabilities of the input binary variables.
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