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Abstract - High-performance data-intensive applications 
demand reliable, high-performance storage that clients 
can depend on for data storage and delivery. While 
network storage systems have been successful in a variety 
of scenarios, they often do not satisfy all the requirements 
of today’s computing environments. Accordingly, 
Emerging networking architectures such as InfiniBand 
(IB) have been designed to achieve low-latency and high-
bandwidth in a System Area Network (SAN) environment. 
In addition, protocols such as Direct Access File System 
(DAFS) have been designed to incorporate Remote Direct 
Memory Access (RDMA) interconnects like IB for data 
transfer and user-level networking. Together, these offer 
an attractive solution for reducing the CPU overhead on 
the I/O data path for network storage systems. Thus, this 
paper presents the implementation and experimental 
results in terms of throughput and CPU utilization of a 
network storage system that uses DAFS over IB as a 
transport mechanism. Consequently, the results show that 
NSM benefits from DAFS and IB in terms of high 
throughput and low CPU utilization. 
 
Keywords: NSM, DAFS, InfiniBand, System 
Throughput. 
 

1. Introduction 
 

Network storage systems have emerged as an important 
research field that is driven by the demand for scalable 
and fault-tolerant storage structures. These systems were 
designed to satisfy the tremendous growth in information 
storage induced by a new class of data-intensive 
applications. In addition, storage capacities and 
computational speeds have achieved tremendous growth. 
However, the performance of network storage systems is 
often limited by overheads in the I/O path, such as 
memory copying, network access costs, and protocol 
overhead. As a result, I/O remains the bottleneck for high-
performance data-intensive applications. Thus, faster 

processing speeds have imposed the need for faster I/O for 
storage and retrieval of huge datasets. Accordingly, 
emerging fast and light-weight file access protocols like 
Direct Access File System (DAFS) [5] have been 
designed to incorporate standard memory-to-memory 
interconnects such as InfiniBand (IB) [3]. There are two 
common features that are shared by DAFS and IB. These 
features are user-level file systems and remote direct 
memory access (RDMA) [10]. Protocols such as DAFS 
and IB create an opportunity to address the limitations 
discussed so far without changing the fundamental 
principles of operating systems.  
Several communication protocols using Virtual Interface 
Architecture (VIA) were developed to minimize the 
overheads caused in the I/O path. The feasibility of 
leveraging IB technology to improve I/O performance and 
scalability of cluster file systems was examined in [13]. 
The transport layer designed by the latter is customized 
specially for the Parallel Virtual File System (PVFS) 
protocol by trading transparency and generality for 
performance. Various design issues for providing a high 
performance DAFS implementation over IB is discussed 
in [11]. The latter also presents a performance evaluation 
to demonstrate the bandwidth characteristics of the 
implementation of DAFS and the impact of reducing 
overheads request processing and memory registration. 
This paper explores the fundamental performance 
characteristics of utilizing DAFS over IB technology to 
improve I/O performance of a network storage system 
such as Network Storage Manager (NSM). While PVFS is 
designed to meet the increasing I/O demands of parallel 
applications in cluster systems, NSM is a data storage and 
access framework for data intensive applications with a 
unique pluggable architecture. Hence, we implement an 
NSM transport layer that utilizes DAFS over IB to 
incorporate user-level networking and RDMA. 
Consequently, our results show that NSM benefits from 
DAFS and IB in terms of high throughput and low CPU 
utilization. 
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The layout of this paper is as follows. Section 2 outlines 
the features of NSM, IB and DAFS and describes the 
system architecture of the proposed implementation. 
Section 3 provides empirical analysis that illustrates the 
performance gain that is obtained from the proposed 
implementation. Finally, Section 4 presents a summary of 
the paper. 
 

2. Implementation Layout 
 

In this section, we present the prime components of the 
system that lay the foundation for the proposed 
implementation. We utilize DAFS over IB as the transport 
mechanism for NSM and provide the context for our 
experimental results. We begin with a discussion of the 
issues that limit performance in network storage systems. 
We then discuss the two critical architectural features that 
we examine to overcome performance bottlenecks: direct-
access transports and user-level file systems. 
The first issue that network storage systems face is 
performance degradation due to network-related memory 
copies. The latter diverts system resources from other 
application processing. Thus, today’s new class of data-
intensive applications with high bandwidth feeds, are 
adversely affected by high overhead copying which can 
limit total system performance. Therefore, network 
storage systems would benefit from a reduction in 
copying overhead. One way to avoid these memory copies 
is to use a Network Interface Controller (NIC) support for 
direct access networking. This is characterized by direct 
data transfers between application space buffers through 
the network. 
The second issue is CPU overhead of the communication 
protocol. The primary causes of this issue are network 
protocol processing and data movement between the 
network and application buffers. This in turn, limits the 
bandwidth that can be sent between machines. Examples 
of an application that can benefit from reducing CPU 
overhead are the I/O intensive applications that cause the 
CPU to saturate due to high processing rates. 
In what follows, we provide an overview of the key 
technologies that are incorporated in our implementation 
to overcome the aforementioned issues. 
 
2.1 NSM 
 
Network Storage Manager (NSM) was developed in the 
Distributed Computing Laboratory at Jackson State 
University in 2001 and has been used as a basis for 
exploring I/O performance improvement for network 
storage systems and consolidates the physical storage of 
multiple hosts [1]. Historically, this was accomplished 
with multiple Redundant Array of Inexpensive Disks 
(RAID) systems and Fiber-Channel switched fabric. NSM 
is a robust, scalable, high-performance, platform-
independent, distributed mass storage system. It is used as 
a data storage and access framework for data intensive 

applications. Through its unique, pluggable architecture, 
NSM offers its applications the ability to control the 
behavior of data storage, access environments and 
transport mechanism. Consequently, NSM enables the 
application to tune and enhance its I/O performance. 
As illustrated in Figure 1, NSM stripes its files across 
multiple distributed storage servers. Accordingly, 
concurrent data streams to and from the parallel servers 
are used to achieve high data rates and perfect load 
balancing. In addition, coded redundancy is added to the 
data and stored on distinct parity storage servers. This 
redundancy is used to effectively recover from transient 
and permanent server and data faults to achieve reliability 
and high-availability. Hence, the system offers a self-
healing feature by automatically replacing permanently 
failing servers with operational backup servers. 
NSM generates and manages storage meta-data, which 
maintains information about the structure of the file and 
the location of its components. Consequently, the system 
utilizes the meta-data to provide location transparency to 
users and allows them to deal with remote shared data 
objects with the same ease as dealing with a local file. 
This allows data to become more widely available to 
geographically distributed users. Thus, there is no need to 
distribute copies of files. 
FTP is one of the most common network communication 
protocols. However, many application environments may 
not find it optimal for many reasons such as performance 
and security. Thus, FTP may be preferred for data 
distribution but not for retrieval. In NSM, on the other 
hand, applications have full control over the network 
protocol. An application can plug in its protocol by 
implementing the protocol interface provided by NSM. 
Hence, in our study, NSM has been successfully extended 
as a DAFS enabled storage system by replacing the 
standard protocol policy with DAFS implementation. 
 
2.2 InfiniBand 
 
InfiniBand (IB) is utilized as a mechanism that provides 
direct access and hardware transport protocol features. 

Figure 1: NSM Data Layout over Storage Nodes
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InfiniBand Architecture (IBA) is an industry standard that 
defines a new high-speed switched fabric subsystem 
designed to connect processor nodes and I/O nodes to 
form a system area network [3]. 
Version 1.0 of IBA specification was released in October 
2000 and the 1.0a version, mainly consisting of minor 
changes to the 1.0 version, was released in June 2001.  
This new interconnect moves away from the local 
transaction-based I/O model across busses to a remote 
message-passing model across channels. The architecture 
is independent of the host operating system (OS) and the 
processor platform. It provides and supports both reliable 
and unreliable transport messaging (send/receive) and 
memory manipulation semantics (e.g., RDMA read/write) 
without software intervention in the data transfer path. 
IBA uses a bidirectional serial bus for low cost and low 
latency. 
Remote Direct Memory Access (RDMA) is a technology 
that allows the transfer of data directly from a process 
running on a node into the memory of a process running 
on a remote node; see [10] for more details. The OS and 
CPU are not involved in this transfer which makes RDMA 
attractive. IB, on the other hand, provides both RDMA 
read and write data transfers. It allows computers in a 
network to exchange data in main memory without 
involving the processor, cache, or operating system of 
either computer. Like locally-based Direct Memory 
Access (DMA), RDMA improves throughput and 
performance since it frees up resources. RDMA also 
facilitates a faster data transfer rate by implementing a 
reliable transport protocol in hardware on NIC. In addition 
to supporting zero-copy networking that lets NIC transfer 
data directly to or from application memory, RDMA 
eliminates the need to copy data between application 
memory and the kernel. The emergence of commercially 
available NIC with RDMA capabilities has motivated the 
design of DAFS, which is a network file access protocol 
optimized to use RDMA for memory copy avoidance and 
transport protocol offload [6]. 
 
2.3 DAFS  
 
Direct Access File System (DAFS) [5] is a file access 
protocol that is used to provide the file system semantics 
needed for NSM. DAFS was introduced in April 2001 and 
is specifically designed to take advantage of standard 
memory-to-memory interconnect technologies such as IB 
in high-performance data center environments. It is 
optimized for high-throughput, low-latency 
communication, and for the requirements of local file-
sharing architectures. DAFS enables applications to 
access network interface hardware without operating 
system intervention, and carry out bulk data transfers 
directly to or from application buffers with minimal CPU 
overhead. The protocol enhances performance, reliability 
and scalability of applications by using a new generation 
of high-performance and low-latency storage networks. 

The key motivation behind the architecture of DAFS is to 
reduce CPU overhead on the I/O data path. This is likely 
to decrease latency of I/O operations. DAFS greatly 
reduces the overhead normally associated with file access 
methods. In the case of local or network file systems, data 
is copied from the disk or network subsystem into a buffer 
cache, and then it is copied into the application’s private 
buffer. File access over network file systems incurs 
additional data copies in the networking stack. Some 
operating systems can bypass the buffer cache copy in 
certain cases. However, all reads over a traditional 
network file system require at least one data copy. 
DAFS has a fundamental advantage over other file access 
methods when reading data. By using the remote memory 
addressing capability of transports like Virtual Interface 
(VI) and IB, an application using the DAFS Application 
Programming Interface (API) can read a file without 
requiring any copies on the client side. Using the “direct” 
DAFS operations, clients read or write request causes the 
DAFS server to issue RDMA requests back to the client. 
This allows data to be transferred to and from client 
application’s buffers without any CPU overhead at all on 
the client side. DAFS write path is also efficient in the 
following sense: to avoid extra data copies on write 
requests, a traditional local or remote file system must 
lock down the application’s I/O buffers before each 
request. A DAFS client allows an application to register 
its buffers with NIC once, which avoids the per-operation 
registration overhead. 
The disadvantage of the user library approach is its lack of 
compatibility with the usual system call interface to the 
host OS file systems, requiring applications to be 
modified to take advantage of these capabilities which 
gives optimal performance. Thus, this approach is 
intended for high-performance applications that are 
sensitive to either throughput or latency, or applications 
that can make use of the extended DAFS services made 
available through the user API. 
 
2.4 Implementation Architecture 
 
We provide here the architecture of implementing NSM 
on DAFS over IB. NSM is designed to be used with any 
type of transport protocol that supports file access 
semantics such as FTP, HTTP in addition to the local file 
system. Our implementation is based on a kernel DAFS 
(kDAFS) for both the client and the server. On the client 
side, NSM uses DAFS-mounted subdirectories as its 
nodes for writing and reading striped and meta data. Each 
DAFS mounted directory represents one server node. 
Figure 2 presents the proposed NSM software architecture 
using DAFS over IB network. NSM transport layer 
transfers data using DAFS-mounted directories of 
different servers on the client side. The system depends on 
the server and client file system for caching and read 
ahead.  
The performance experiments uses kDAFS which is a file 
system loaded in the operating system; see [7]  for details. 
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kDAFS implementation uses Direct Access Provider 
Library (DAPL) to provide the API for Direct Access 
Transport (DAT) semantics; see [2] for details. kDAFS 
implementation is transparent to NSM. In other words, 
kDAFS goes through the normal OS control and data 
paths. 

 
3. Empirical Analysis 

 
This section presents the performance results of our 
implementation of NSM on DAFS over IB on our testbed 
with the design described in Section 2.  
Firstly, we present our experimental testbed that was used 
for the evaluation of this implementation. Secondly, we 
demonstrate that NSM can utilize DAFS and IB features 
to achieve high throughput and low CPU utilization. Thus, 
a series of experiments were conducted to show the effect 
of these features. The purpose of these experiments is to 
examine the system performance in terms of throughput, 
and CPU utilization for reading and writing huge datasets. 
The experiments demonstrate the effect of caching and 
number of servers used for distributing and retrieving 
large datasets. 
 
3.1 Experimental Setup 
 
The setup of our experiments is depicted in Figure-3. The 
results that follow were gathered using the following 
testbed: the server nodes used in the experiments were 
equipped with an Intel E7501 chipset, two Intel Xeon 2.4 
GHz P4 processors, 512 KB L2 cache, 400 MHz front 
side bus, 1 GB DDR SDRAM and 64-bit 133 MHz PCI-X 
interfaces. The client nodes on the other hand, were 
equipped with an Intel E7501 chipset, Intel Xeon 2.4 GHz 
P4 processor, 512 KB L2 cache, 400 MHz front side bus, 
1 GB DDR SDRAM and 64-bit 133 MHz PCI-X 
interfaces each node was also equipped with a 250GB, 
7200K RPM Seagate disk. Both the client and server 
nodes ran the Linux-2.4.21 kernel. For the IB-based 
implementations, we used Mellanox InfiniHost MT23108 
Dual Port 4x HCA adapters connected through an 

InfiniScale MTS2400 24-Ports IB switch. For the 
Mellanox InfiniHost HCA, we used firmware version fw-
08-3.3.2. For DAFS server and client we used DAFS beta 
1.0 [14]. All the performances reported in this paper are 
based on the average of 10 measurements. 
 
3.2 Performance Results 
 
3.2.1 Read throughput 
 
The first series of experiments investigates the effect of 
the number of DAFS servers and caching on the overall 
read throughput of NSM using DAFS over IB as the 
underlying transport layer and interconnect. The data was 
gathered using a 250MB file and a 2MB block size which 
has been striped among the server nodes using NSM. The 
file is first distributed each time using different number of 
server nodes: one, two, three and four servers. The file 
then is read entirely using NSM in parallel and the elapsed 
time it takes for the file to read is recorded. The 
throughput (MB/s) is calculated by dividing the file size 
(MB) by the elapsed time (seconds) required to complete 
reading the entire file. Each experimental result represents 
the average of ten runs. The first sets of experiments were 
conducted using cache (warm disk). At the beginning, the 
file is read once; this allows the server file system to 
cache the file into its memory. Next the file is read and the 
elapsed time is recorded. Therefore, this experiment 
measures only the network transfer speed that can be 
achieved using NSM.  
Figure 4 depicts the results of this experiment. From this 
figure, when using one server we get an average 
throughput of about 130MB/sec. When using two servers, 
on the other hand, this average throughput increases to 
about 164MB/sec, resulting in about 27% increase from 
the result of only one server. Alternatively, when using 
three servers, the average throughput increases to about 
171MB/sec, resulting in a much smaller increase from the 
previous case of about 4%. Finally, with four servers, we 
reach about 172MB/sec with a slim increase from the 
previous case of about 0.5%.  

Figure 2: System Architecture Figure 3: Experimental Setup
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Thus, although the average throughput is directly 
proportional to the number of servers, the relative increase 
of the average throughput from the use of consecutive 
number of servers decreases rapidly as the number of 
servers increase. To illustrate this, in the experiment 
depicted in Figure 4, there is almost no increase from 
using three servers to using four servers. However, 
although one may argue from the aforementioned 
experiment that two servers are enough, the addition of 
more servers increases the reliability of the system, 
availability of data, and scalability in terms of users and 
capacity as mentioned in Section 2.1.    
We believe that the underlying layer is reaching the 
saturation level at about 172MB/sec due to the bottleneck 
introduced by the maximum throughput achievable by the 
underlying network using DAFS implementation over IB. 
To investigate this point, we used the Bonnie++ 
Benchmark to measure the maximum achievable 
throughput of the underlying link. Bonnie++ is a file 
system test that intensely exercises both sequential reads 
and writes to measure the achievable bandwidth [15]. 
Thus, with one, two, three, and four servers, we reach 
74%, 94%, 98%, and 98% of the achievable throughput, 
respectively.  
The second set of experiments involves reading the same 
file using the same parameters as in the first set of 
experiments but without caching (disk I/O). Note since no 
cache is used in these experiments, the bottleneck in these 
experiments is the disk I/O.  
Figure 5 shows the throughput achieved by the system. 
Note that the system achieves throughput of 41MB/s, 
75MB/s, 85MB/s and 95MB/s using one, two, three and 
four servers respectively. This increase is due to parallel 
read feature that NSM employs. Thus, when using one 
server, we get an average throughput of about 41MB/sec. 
When using two servers, this average throughput 
increases to about 75MB/sec, resulting in about 88% 
increase from the result of only one server. When using 
three servers, the average throughput increases to about 
85MB/sec, resulting in a much smaller increase from the 
previous case of about 12%. Finally, with four servers, we 
reach about 95MB/sec with the same increase from the 
previous case of about 12%.   
The maximum disk throughput is about 57MB/s without 
any file system overhead when measured using hdparm 
command, which is available in Linux. Since the 
maximum individual disk speed is about 57MB/s without 
file system overhead, network access, cache or read 
ahead, one would expect that with a parallel read of 4 
servers, the throughput can reach 228MB/s. However, it is 
not possible to achieve this value since the system 
involves file system overhead and network access times.  
 
3.2.2 Write Throughput 
 
This experiment calculates the throughput by dividing the  
size of the file (MB) by the elapsed time (seconds) 
required to complete writing the entire file to the 

Figure 5: Read Throughput Without Caching 
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distributed data servers. Figure 6 depicts the results of this 
experiment. From this figure, when using one server we 
get an average throughput of 44MB/sec. When using two 
servers, this average throughput increases to about 
50MB/sec, resulting in about 14% increase from the result 
of one server. When using three servers, the average write 
throughput increases to about 53MB/sec, resulting in 
about 6% increase from the pervious result. Finally with 
four servers, we reach about 56MB/sec with an increase 
from the previous case of about 6%.  As we see from this 
experiment, the increase is minimal with respect to the 
number of servers.  This is because when writing, the 
client reads data from its local disk and distributes it to the 
data servers. The limitation in this case is the disk on the 
client side which has a raw speed of 57 MB/s.  Thus, with 
one, two, three, and four servers, we reach 77%, 88%, 
93%, and 98% of the achievable throughput, respectively.  
 
3.2.3 CPU Utilization and I/O Wait for Read       
Utilizing NSM on DAFS over IB 
 
The graphs in Figure 7 and Figure 8 report percentage of 
CPU utilization and I/O wait for reading with caching and 
without caching, respectively,  using NSM on DAFS over 
IB. These results are the averages of readings gathered 
using mpstat, which is a program that is available on 
Solaris and Linux that reports statistics about processor 
utilization. In both figures, we observe that when using 
one data server for reading, the average CPU utilization is 
about 15%. When using two servers the average increases 
is about 30% resulting in about 100% increase from the 
result of two servers. When using three servers, the 
average CPU utilization increases to about 59% resulting 
in an increase of about 97% from the previous result. 
Finally with four data servers the average CPU utilization 
reaches 72% with an increase of about 22% from the 
previous case. Figures77 and 8 also demonstrate that 
caching has no effect on CPU utilization and that each 
server introduces 15% utilization of the CPU. The 
increase in CPU utilization is due to the number of threads 
that handle read requests in parallel on the client machine 
from the data servers. A running thread can be modeled as 
an alternating series of CPU usage and I/O wait. During a 
CPU usage, a thread is executing instructions while during 
an I/O wait the thread is waiting for I/O operation to be 
performed and not executing any instructions. Thus, from 
the results of the experiments the CPU utilization 
increases as the number of data servers increases.  
Figure 7 reports the I/O wait percentage with caching and 
multiple numbers of servers for reading. We observe that 
when using one server the I/O wait is about 83%. When 
using two serves the wait time decreases to about 7%, 
resulting in about 92% decrease in wait time. When using 
three servers, the I/O wait drops to 1% resulting in about 
86% decrease from the previous result. Finally with four 
servers, we reach almost 0% in I/O wait with a decrease 
of 100% from the previous result. This is because the I/O 
operations are distributed among the data servers and due 

to the parallelism that NSM employs when retrieving data 
from multiple data servers where each data server handles 
the I/O requests and data is copied directly from memory 
to memory by the server.  
Figure 8, on the other hand, reports the I/O wait without 
caching. We observe that when using one server the I/O 
wait is about 78%. When using two servers, the average 
decreases to about 63% resulting in about 19% decrease 
from the previous result.  When using three servers, the 
average I/O wait is about 31% resulting in about 51% 
decrease from the previous result. Finally with four 
servers and no caching the average I/O wait reaches about 
13% resulting in about 58% from the previous result. This 
monotonic decrease in I/O wait is due to the disk speed on 
the server nodes data being transferred from the disk to 
the client memory in parallel.  
To conclude this section, both Figures 7 and 8 show that 
whether caching is employed or not, the new 
implementation significantly reduces the I/O wait.    
 

Figure 7: CPU Utilization and I/O Wait with Cache
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Figure 8: CPU Utilization and I/O Wait Without Cache
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4. CONCLUSION  
 

The main contribution of this work is the investigation of 
the performance of NSM utilizing DAFS over InfiniBand. 
We presented various experiments that utilize DAFS over 
InfiniBand for NSM and involve a client writing and 
reading blocks from warm server cache (no disk I/O) and 
no cache (disk I/O). We measured the bandwidth, CPU 
utilization and I/O wait. These experiments demonstrated 
how the proposed utilization enhances the performance of 
NSM by increasing the throughput and reducing CPU 
utilization. It would be of interest to perform similar study 
using NSM with other transport layer technologies such as 
GigaEthernet, TCP Offload Engines (TOE), IPoIB, etc. 
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