
 1

The 2006 International Conference on Parallel & Distributed Processing Techniques & Applications, Las Vegas, Nevada, June 2006

Performance Analysis of Network Storage
Manager System Using DAFS over InfiniBand

Omar Aldaoud*, Houssain Kettani*, Krishnapriya Guduru* and Qutaibah Malluhi**

* Department of Computer Science

Jackson State University
Jackson, MS 39217

** Department of Computer Science and Engineering

Qatar University
Doha, Qatar

Abstract - High-performance data-intensive applications
demand reliable, high-performance storage that clients
can depend on for data storage and delivery. While
network storage systems have been successful in a variety
of scenarios, they often do not satisfy all the requirements
of today’s computing environments. Accordingly,
Emerging networking architectures such as InfiniBand
(IB) have been designed to achieve low-latency and high-
bandwidth in a System Area Network (SAN) environment.
In addition, protocols such as Direct Access File System
(DAFS) have been designed to incorporate Remote Direct
Memory Access (RDMA) interconnects like IB for data
transfer and user-level networking. Together, these offer
an attractive solution for reducing the CPU overhead on
the I/O data path for network storage systems. Thus, this
paper presents the implementation and experimental
results in terms of throughput and CPU utilization of a
network storage system that uses DAFS over IB as a
transport mechanism. Consequently, the results show that
NSM benefits from DAFS and IB in terms of high
throughput and low CPU utilization.

Keywords: NSM, DAFS, InfiniBand, System
Throughput.

1. Introduction

Network storage systems have emerged as an important
research field that is driven by the demand for scalable
and fault-tolerant storage structures. These systems were
designed to satisfy the tremendous growth in information
storage induced by a new class of data-intensive
applications. In addition, storage capacities and
computational speeds have achieved tremendous growth.
However, the performance of network storage systems is
often limited by overheads in the I/O path, such as
memory copying, network access costs, and protocol
overhead. As a result, I/O remains the bottleneck for high-
performance data-intensive applications. Thus, faster

processing speeds have imposed the need for faster I/O for
storage and retrieval of huge datasets. Accordingly,
emerging fast and light-weight file access protocols like
Direct Access File System (DAFS) [5] have been
designed to incorporate standard memory-to-memory
interconnects such as InfiniBand (IB) [3]. There are two
common features that are shared by DAFS and IB. These
features are user-level file systems and remote direct
memory access (RDMA) [10]. Protocols such as DAFS
and IB create an opportunity to address the limitations
discussed so far without changing the fundamental
principles of operating systems.
Several communication protocols using Virtual Interface
Architecture (VIA) were developed to minimize the
overheads caused in the I/O path. The feasibility of
leveraging IB technology to improve I/O performance and
scalability of cluster file systems was examined in [13].
The transport layer designed by the latter is customized
specially for the Parallel Virtual File System (PVFS)
protocol by trading transparency and generality for
performance. Various design issues for providing a high
performance DAFS implementation over IB is discussed
in [11]. The latter also presents a performance evaluation
to demonstrate the bandwidth characteristics of the
implementation of DAFS and the impact of reducing
overheads request processing and memory registration.
This paper explores the fundamental performance
characteristics of utilizing DAFS over IB technology to
improve I/O performance of a network storage system
such as Network Storage Manager (NSM). While PVFS is
designed to meet the increasing I/O demands of parallel
applications in cluster systems, NSM is a data storage and
access framework for data intensive applications with a
unique pluggable architecture. Hence, we implement an
NSM transport layer that utilizes DAFS over IB to
incorporate user-level networking and RDMA.
Consequently, our results show that NSM benefits from
DAFS and IB in terms of high throughput and low CPU
utilization.

 2

The layout of this paper is as follows. Section 2 outlines
the features of NSM, IB and DAFS and describes the
system architecture of the proposed implementation.
Section 3 provides empirical analysis that illustrates the
performance gain that is obtained from the proposed
implementation. Finally, Section 4 presents a summary of
the paper.

2. Implementation Layout

In this section, we present the prime components of the
system that lay the foundation for the proposed
implementation. We utilize DAFS over IB as the transport
mechanism for NSM and provide the context for our
experimental results. We begin with a discussion of the
issues that limit performance in network storage systems.
We then discuss the two critical architectural features that
we examine to overcome performance bottlenecks: direct-
access transports and user-level file systems.
The first issue that network storage systems face is
performance degradation due to network-related memory
copies. The latter diverts system resources from other
application processing. Thus, today’s new class of data-
intensive applications with high bandwidth feeds, are
adversely affected by high overhead copying which can
limit total system performance. Therefore, network
storage systems would benefit from a reduction in
copying overhead. One way to avoid these memory copies
is to use a Network Interface Controller (NIC) support for
direct access networking. This is characterized by direct
data transfers between application space buffers through
the network.
The second issue is CPU overhead of the communication
protocol. The primary causes of this issue are network
protocol processing and data movement between the
network and application buffers. This in turn, limits the
bandwidth that can be sent between machines. Examples
of an application that can benefit from reducing CPU
overhead are the I/O intensive applications that cause the
CPU to saturate due to high processing rates.
In what follows, we provide an overview of the key
technologies that are incorporated in our implementation
to overcome the aforementioned issues.

2.1 NSM

Network Storage Manager (NSM) was developed in the
Distributed Computing Laboratory at Jackson State
University in 2001 and has been used as a basis for
exploring I/O performance improvement for network
storage systems and consolidates the physical storage of
multiple hosts [1]. Historically, this was accomplished
with multiple Redundant Array of Inexpensive Disks
(RAID) systems and Fiber-Channel switched fabric. NSM
is a robust, scalable, high-performance, platform-
independent, distributed mass storage system. It is used as
a data storage and access framework for data intensive

applications. Through its unique, pluggable architecture,
NSM offers its applications the ability to control the
behavior of data storage, access environments and
transport mechanism. Consequently, NSM enables the
application to tune and enhance its I/O performance.
As illustrated in Figure 1, NSM stripes its files across
multiple distributed storage servers. Accordingly,
concurrent data streams to and from the parallel servers
are used to achieve high data rates and perfect load
balancing. In addition, coded redundancy is added to the
data and stored on distinct parity storage servers. This
redundancy is used to effectively recover from transient
and permanent server and data faults to achieve reliability
and high-availability. Hence, the system offers a self-
healing feature by automatically replacing permanently
failing servers with operational backup servers.
NSM generates and manages storage meta-data, which
maintains information about the structure of the file and
the location of its components. Consequently, the system
utilizes the meta-data to provide location transparency to
users and allows them to deal with remote shared data
objects with the same ease as dealing with a local file.
This allows data to become more widely available to
geographically distributed users. Thus, there is no need to
distribute copies of files.
FTP is one of the most common network communication
protocols. However, many application environments may
not find it optimal for many reasons such as performance
and security. Thus, FTP may be preferred for data
distribution but not for retrieval. In NSM, on the other
hand, applications have full control over the network
protocol. An application can plug in its protocol by
implementing the protocol interface provided by NSM.
Hence, in our study, NSM has been successfully extended
as a DAFS enabled storage system by replacing the
standard protocol policy with DAFS implementation.

2.2 InfiniBand

InfiniBand (IB) is utilized as a mechanism that provides
direct access and hardware transport protocol features.

Figure 1: NSM Data Layout over Storage Nodes

 3

InfiniBand Architecture (IBA) is an industry standard that
defines a new high-speed switched fabric subsystem
designed to connect processor nodes and I/O nodes to
form a system area network [3].
Version 1.0 of IBA specification was released in October
2000 and the 1.0a version, mainly consisting of minor
changes to the 1.0 version, was released in June 2001.
This new interconnect moves away from the local
transaction-based I/O model across busses to a remote
message-passing model across channels. The architecture
is independent of the host operating system (OS) and the
processor platform. It provides and supports both reliable
and unreliable transport messaging (send/receive) and
memory manipulation semantics (e.g., RDMA read/write)
without software intervention in the data transfer path.
IBA uses a bidirectional serial bus for low cost and low
latency.
Remote Direct Memory Access (RDMA) is a technology
that allows the transfer of data directly from a process
running on a node into the memory of a process running
on a remote node; see [10] for more details. The OS and
CPU are not involved in this transfer which makes RDMA
attractive. IB, on the other hand, provides both RDMA
read and write data transfers. It allows computers in a
network to exchange data in main memory without
involving the processor, cache, or operating system of
either computer. Like locally-based Direct Memory
Access (DMA), RDMA improves throughput and
performance since it frees up resources. RDMA also
facilitates a faster data transfer rate by implementing a
reliable transport protocol in hardware on NIC. In addition
to supporting zero-copy networking that lets NIC transfer
data directly to or from application memory, RDMA
eliminates the need to copy data between application
memory and the kernel. The emergence of commercially
available NIC with RDMA capabilities has motivated the
design of DAFS, which is a network file access protocol
optimized to use RDMA for memory copy avoidance and
transport protocol offload [6].

2.3 DAFS

Direct Access File System (DAFS) [5] is a file access
protocol that is used to provide the file system semantics
needed for NSM. DAFS was introduced in April 2001 and
is specifically designed to take advantage of standard
memory-to-memory interconnect technologies such as IB
in high-performance data center environments. It is
optimized for high-throughput, low-latency
communication, and for the requirements of local file-
sharing architectures. DAFS enables applications to
access network interface hardware without operating
system intervention, and carry out bulk data transfers
directly to or from application buffers with minimal CPU
overhead. The protocol enhances performance, reliability
and scalability of applications by using a new generation
of high-performance and low-latency storage networks.

The key motivation behind the architecture of DAFS is to
reduce CPU overhead on the I/O data path. This is likely
to decrease latency of I/O operations. DAFS greatly
reduces the overhead normally associated with file access
methods. In the case of local or network file systems, data
is copied from the disk or network subsystem into a buffer
cache, and then it is copied into the application’s private
buffer. File access over network file systems incurs
additional data copies in the networking stack. Some
operating systems can bypass the buffer cache copy in
certain cases. However, all reads over a traditional
network file system require at least one data copy.
DAFS has a fundamental advantage over other file access
methods when reading data. By using the remote memory
addressing capability of transports like Virtual Interface
(VI) and IB, an application using the DAFS Application
Programming Interface (API) can read a file without
requiring any copies on the client side. Using the “direct”
DAFS operations, clients read or write request causes the
DAFS server to issue RDMA requests back to the client.
This allows data to be transferred to and from client
application’s buffers without any CPU overhead at all on
the client side. DAFS write path is also efficient in the
following sense: to avoid extra data copies on write
requests, a traditional local or remote file system must
lock down the application’s I/O buffers before each
request. A DAFS client allows an application to register
its buffers with NIC once, which avoids the per-operation
registration overhead.
The disadvantage of the user library approach is its lack of
compatibility with the usual system call interface to the
host OS file systems, requiring applications to be
modified to take advantage of these capabilities which
gives optimal performance. Thus, this approach is
intended for high-performance applications that are
sensitive to either throughput or latency, or applications
that can make use of the extended DAFS services made
available through the user API.

2.4 Implementation Architecture

We provide here the architecture of implementing NSM
on DAFS over IB. NSM is designed to be used with any
type of transport protocol that supports file access
semantics such as FTP, HTTP in addition to the local file
system. Our implementation is based on a kernel DAFS
(kDAFS) for both the client and the server. On the client
side, NSM uses DAFS-mounted subdirectories as its
nodes for writing and reading striped and meta data. Each
DAFS mounted directory represents one server node.
Figure 2 presents the proposed NSM software architecture
using DAFS over IB network. NSM transport layer
transfers data using DAFS-mounted directories of
different servers on the client side. The system depends on
the server and client file system for caching and read
ahead.
The performance experiments uses kDAFS which is a file
system loaded in the operating system; see [7] for details.

 4

kDAFS implementation uses Direct Access Provider
Library (DAPL) to provide the API for Direct Access
Transport (DAT) semantics; see [2] for details. kDAFS
implementation is transparent to NSM. In other words,
kDAFS goes through the normal OS control and data
paths.

3. Empirical Analysis

This section presents the performance results of our
implementation of NSM on DAFS over IB on our testbed
with the design described in Section 2.
Firstly, we present our experimental testbed that was used
for the evaluation of this implementation. Secondly, we
demonstrate that NSM can utilize DAFS and IB features
to achieve high throughput and low CPU utilization. Thus,
a series of experiments were conducted to show the effect
of these features. The purpose of these experiments is to
examine the system performance in terms of throughput,
and CPU utilization for reading and writing huge datasets.
The experiments demonstrate the effect of caching and
number of servers used for distributing and retrieving
large datasets.

3.1 Experimental Setup

The setup of our experiments is depicted in Figure-3. The
results that follow were gathered using the following
testbed: the server nodes used in the experiments were
equipped with an Intel E7501 chipset, two Intel Xeon 2.4
GHz P4 processors, 512 KB L2 cache, 400 MHz front
side bus, 1 GB DDR SDRAM and 64-bit 133 MHz PCI-X
interfaces. The client nodes on the other hand, were
equipped with an Intel E7501 chipset, Intel Xeon 2.4 GHz
P4 processor, 512 KB L2 cache, 400 MHz front side bus,
1 GB DDR SDRAM and 64-bit 133 MHz PCI-X
interfaces each node was also equipped with a 250GB,
7200K RPM Seagate disk. Both the client and server
nodes ran the Linux-2.4.21 kernel. For the IB-based
implementations, we used Mellanox InfiniHost MT23108
Dual Port 4x HCA adapters connected through an

InfiniScale MTS2400 24-Ports IB switch. For the
Mellanox InfiniHost HCA, we used firmware version fw-
08-3.3.2. For DAFS server and client we used DAFS beta
1.0 [14]. All the performances reported in this paper are
based on the average of 10 measurements.

3.2 Performance Results

3.2.1 Read throughput

The first series of experiments investigates the effect of
the number of DAFS servers and caching on the overall
read throughput of NSM using DAFS over IB as the
underlying transport layer and interconnect. The data was
gathered using a 250MB file and a 2MB block size which
has been striped among the server nodes using NSM. The
file is first distributed each time using different number of
server nodes: one, two, three and four servers. The file
then is read entirely using NSM in parallel and the elapsed
time it takes for the file to read is recorded. The
throughput (MB/s) is calculated by dividing the file size
(MB) by the elapsed time (seconds) required to complete
reading the entire file. Each experimental result represents
the average of ten runs. The first sets of experiments were
conducted using cache (warm disk). At the beginning, the
file is read once; this allows the server file system to
cache the file into its memory. Next the file is read and the
elapsed time is recorded. Therefore, this experiment
measures only the network transfer speed that can be
achieved using NSM.
Figure 4 depicts the results of this experiment. From this
figure, when using one server we get an average
throughput of about 130MB/sec. When using two servers,
on the other hand, this average throughput increases to
about 164MB/sec, resulting in about 27% increase from
the result of only one server. Alternatively, when using
three servers, the average throughput increases to about
171MB/sec, resulting in a much smaller increase from the
previous case of about 4%. Finally, with four servers, we
reach about 172MB/sec with a slim increase from the
previous case of about 0.5%.

Figure 2: System Architecture Figure 3: Experimental Setup

 5

Thus, although the average throughput is directly
proportional to the number of servers, the relative increase
of the average throughput from the use of consecutive
number of servers decreases rapidly as the number of
servers increase. To illustrate this, in the experiment
depicted in Figure 4, there is almost no increase from
using three servers to using four servers. However,
although one may argue from the aforementioned
experiment that two servers are enough, the addition of
more servers increases the reliability of the system,
availability of data, and scalability in terms of users and
capacity as mentioned in Section 2.1.
We believe that the underlying layer is reaching the
saturation level at about 172MB/sec due to the bottleneck
introduced by the maximum throughput achievable by the
underlying network using DAFS implementation over IB.
To investigate this point, we used the Bonnie++
Benchmark to measure the maximum achievable
throughput of the underlying link. Bonnie++ is a file
system test that intensely exercises both sequential reads
and writes to measure the achievable bandwidth [15].
Thus, with one, two, three, and four servers, we reach
74%, 94%, 98%, and 98% of the achievable throughput,
respectively.
The second set of experiments involves reading the same
file using the same parameters as in the first set of
experiments but without caching (disk I/O). Note since no
cache is used in these experiments, the bottleneck in these
experiments is the disk I/O.
Figure 5 shows the throughput achieved by the system.
Note that the system achieves throughput of 41MB/s,
75MB/s, 85MB/s and 95MB/s using one, two, three and
four servers respectively. This increase is due to parallel
read feature that NSM employs. Thus, when using one
server, we get an average throughput of about 41MB/sec.
When using two servers, this average throughput
increases to about 75MB/sec, resulting in about 88%
increase from the result of only one server. When using
three servers, the average throughput increases to about
85MB/sec, resulting in a much smaller increase from the
previous case of about 12%. Finally, with four servers, we
reach about 95MB/sec with the same increase from the
previous case of about 12%.
The maximum disk throughput is about 57MB/s without
any file system overhead when measured using hdparm
command, which is available in Linux. Since the
maximum individual disk speed is about 57MB/s without
file system overhead, network access, cache or read
ahead, one would expect that with a parallel read of 4
servers, the throughput can reach 228MB/s. However, it is
not possible to achieve this value since the system
involves file system overhead and network access times.

3.2.2 Write Throughput

This experiment calculates the throughput by dividing the
size of the file (MB) by the elapsed time (seconds)
required to complete writing the entire file to the

Figure 5: Read Throughput Without Caching

Read Throughput Without Caching Block size 2048KB

95

41

85

75

40

50

60

70

80

90

100

1 server 2 servers 3 servers 4 servers

Num ber of Servers

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
B

/s
)

Figure 4: Read Throughput with Caching

Read Throughput with Caching Block Size 2048KB

171 172

164

130

120

130

140

150

160

170

180

1 server 2 servers 3 servers 4 servers

Number of Servers

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

B/
s)

Write Throughput Block Size 2048KB

56

53

50

44

42

44

46

48

50

52

54

56

58

1 server 2 servers 3 servers 4 servers

Number of Servers

Av
er

ag
e

Th
ro

ug
hp

ut
 (M

B/
s)

Figure 6: Write Throughput

 6

distributed data servers. Figure 6 depicts the results of this
experiment. From this figure, when using one server we
get an average throughput of 44MB/sec. When using two
servers, this average throughput increases to about
50MB/sec, resulting in about 14% increase from the result
of one server. When using three servers, the average write
throughput increases to about 53MB/sec, resulting in
about 6% increase from the pervious result. Finally with
four servers, we reach about 56MB/sec with an increase
from the previous case of about 6%. As we see from this
experiment, the increase is minimal with respect to the
number of servers. This is because when writing, the
client reads data from its local disk and distributes it to the
data servers. The limitation in this case is the disk on the
client side which has a raw speed of 57 MB/s. Thus, with
one, two, three, and four servers, we reach 77%, 88%,
93%, and 98% of the achievable throughput, respectively.

3.2.3 CPU Utilization and I/O Wait for Read
Utilizing NSM on DAFS over IB

The graphs in Figure 7 and Figure 8 report percentage of
CPU utilization and I/O wait for reading with caching and
without caching, respectively, using NSM on DAFS over
IB. These results are the averages of readings gathered
using mpstat, which is a program that is available on
Solaris and Linux that reports statistics about processor
utilization. In both figures, we observe that when using
one data server for reading, the average CPU utilization is
about 15%. When using two servers the average increases
is about 30% resulting in about 100% increase from the
result of two servers. When using three servers, the
average CPU utilization increases to about 59% resulting
in an increase of about 97% from the previous result.
Finally with four data servers the average CPU utilization
reaches 72% with an increase of about 22% from the
previous case. Figures77 and 8 also demonstrate that
caching has no effect on CPU utilization and that each
server introduces 15% utilization of the CPU. The
increase in CPU utilization is due to the number of threads
that handle read requests in parallel on the client machine
from the data servers. A running thread can be modeled as
an alternating series of CPU usage and I/O wait. During a
CPU usage, a thread is executing instructions while during
an I/O wait the thread is waiting for I/O operation to be
performed and not executing any instructions. Thus, from
the results of the experiments the CPU utilization
increases as the number of data servers increases.
Figure 7 reports the I/O wait percentage with caching and
multiple numbers of servers for reading. We observe that
when using one server the I/O wait is about 83%. When
using two serves the wait time decreases to about 7%,
resulting in about 92% decrease in wait time. When using
three servers, the I/O wait drops to 1% resulting in about
86% decrease from the previous result. Finally with four
servers, we reach almost 0% in I/O wait with a decrease
of 100% from the previous result. This is because the I/O
operations are distributed among the data servers and due

to the parallelism that NSM employs when retrieving data
from multiple data servers where each data server handles
the I/O requests and data is copied directly from memory
to memory by the server.
Figure 8, on the other hand, reports the I/O wait without
caching. We observe that when using one server the I/O
wait is about 78%. When using two servers, the average
decreases to about 63% resulting in about 19% decrease
from the previous result. When using three servers, the
average I/O wait is about 31% resulting in about 51%
decrease from the previous result. Finally with four
servers and no caching the average I/O wait reaches about
13% resulting in about 58% from the previous result. This
monotonic decrease in I/O wait is due to the disk speed on
the server nodes data being transferred from the disk to
the client memory in parallel.
To conclude this section, both Figures 7 and 8 show that
whether caching is employed or not, the new
implementation significantly reduces the I/O wait.

Figure 7: CPU Utilization and I/O Wait with Cache

CPU utilization and I/O wait with Cache

83%
72%

59%

30%

15%
7%

1% 0%
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 server 2 servers 3 servers 4 servers

Number of Server nodes

CP
U

Pe
rc

en
ta

ge

System I/O wait with cache

Figure 8: CPU Utilization and I/O Wait Without Cache

CPU utilization and I/O wait Without Cache

63%

13%

72%

59%

30%

15%

78%

31%

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 server 2 servers 3 servers 4 servers

Number of Server nodes

CP
U

Pe
rc

en
ta

ge

System I/O Wait with no cache

 7

4. CONCLUSION

The main contribution of this work is the investigation of
the performance of NSM utilizing DAFS over InfiniBand.
We presented various experiments that utilize DAFS over
InfiniBand for NSM and involve a client writing and
reading blocks from warm server cache (no disk I/O) and
no cache (disk I/O). We measured the bandwidth, CPU
utilization and I/O wait. These experiments demonstrated
how the proposed utilization enhances the performance of
NSM by increasing the throughput and reducing CPU
utilization. It would be of interest to perform similar study
using NSM with other transport layer technologies such as
GigaEthernet, TCP Offload Engines (TOE), IPoIB, etc.

ACKNOWLEDGEMENT

This work was funded by the Department of Defense
(DoD) through the Engineering Research Development
Center (ERDC), Vicksburg, Mississippi, under contract
number W912HZ-05-C-0051.

REFERENCES

[1] Z. Ali and Q. Malluhi, “NSM - A Distributed Storage

Architecture for Data Intensive Applications,”
proceedings of the 20th IEEE/11th NASA Goddard
Conference on Mass Storage Systems and
Technologies, San Diego, California, April 2003.

[2] Direct Access Transport DAT Collaborative,
http://www.datcollaborative.org

[3] InfiniBand Trade Association, “About InfiniBand
Trade Association: An InfiniBand Technology
Overview,” http://www.infinibandta.org/ibta/.

[4] http://java.sun.com/j2se/1.4.2/docs/guide/nio
[5] S. Kleiman, “DAFS: A New High-Performance

Networked File System,” proceedings of ACM
Queue, Vol. 1, No. 4, June 2003.

[6] K. Magoutis, S. Addetia, A. Fedorova and
M.~I.~Seltzer, “Making the Most out of direct-access
Network Attached Storage”. Proceedings of Second
USENIX Conference on File and Storage
Technologies, San Francisco, California, March
2003.

[7] K. Magoutis, “Exploiting Direct-Access Networking
in Network Attached Storage Systems” Ph.D. Thesis,
Division of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts, May
2003.

[8] Mellanox Technologies Inc., “Mellanox IB-Verbs
API (VAPI),” Rev. 0.95, March 2003.

[9] T. M. Pinkston, A. F. Benner, M. Krause,
I.~M.~Robinson and T. Sterling, “InfiniBand: The De
Facto Future Standard for System and Local Area
Networks or Just a Scalable Replacement for PCI

Buses?” Cluster Computing, Vol. 6, No. 2, April
2003.

[10] RDMA Consortium Website
http://www.rdmaconsortium.org

[11] M. Rangarajan and L. Iftode “Building a User-level
Direct Access File System over InfiniBand,”
proceedings of the 4th Annual Workshop on System
Area Networks (SAN4), Madrid, Spain, February
2004.

[12] V.~Velusamy, C.~Rao, S.~Chakravarthi,
J.~Neelamegam, W.~Chen, S.~Verma and
A.~Skjellum, “Programming the InfiniBand Network
Architecture for High Performance Message Passing
Systems”, proceedings of ISCA 16th International
Conference on Parallel and Distributed Computing
Systems (PDCS-2003), Reno, Nevada, August 2003.

[13] J. Wu, P. Wyckoff and D. Panda “PVFS over
InfiniBand: Design and Performance Evaluation”
proceedings of the International Conference on
Parallel Processing, October 2003.

[14] DAFS: http://sourceforge.net/projects/dafs.
[15] “Bonnie,” http://www.textuality.com/bonnie.

