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Abstract—In this paper we consider MIMO system with Mt

transmitting and Mr receiving antennas, when channel state
information (CSI) is known on the transmitter side. In this case,
the optimum multiple antenna transmission consists of allocating
the transmitted power for each virtual sub-channel related to
the corresponding eigenvalue of the propagation channel matrix.
The optimum power allocation is computed using the water
pouring algorithm (WPA). However, on-line implementation of
the algorithm requires serious computational work, which is
O(M2

t ). We propose a modification to WPA that reduces the
computational complexity to O(Mt).

Index Terms—Channel state information, array signal pro-
cessing, computational complexity, MIMO, transmitted power
allocation, water pouring algorithm.

I. INTRODUCTION

With every day growing new wireless applications such
as video streaming, multimedia, Internet, and so on, the
demand for high-throughput wireless networks is ever in-
creasing. Multiple-input-multiple-output (MIMO) technology
is an attractive way to increase data throughput of a wireless
networks [1], [2].

The main benefits of the multiple antenna transmission
and receiving is improving reception reliability by sending
the same data from multiple antennas (spatial diversity) or
increasing data rate by sending different data at the same
time (spatial multiplexing) [3]. For the latter, MIMO system
decomposes the propagation channel into orthogonal virtual
spatial subchannels that transmit the data in parallel.

The maximum overall channel capacity can be achieved
when the full channel state information (CSI) is available at
the transmitter. CSI helps allocate transmitted power among
the transmitting antennas with an optimum power allocation
principle referred to as water pouring algorithm (WPA) [4],
[5]. According to this principle, the better the channel is, the
more power it gets. As a result, the overall throughput of
MIMO system becomes maximum.

Despite the overall throughput of MIMO system is maxi-
mized, the computation of the channel power allocation factors
using WPA is rather expensive due to high computational cost
of the algorithm implementation, which is O(M2

t ), where Mt

is the number of transmitting antennas. Furthermore, the up-to-
date wireless networks imply that users can move with rather

high speed causing highly non-stationary scenarios. Hence,
CSI is also should be updated in response to the changing
scenario. This fact even greater intensifies the computational
work that can dramatically decrease the benefits of MIMO
systems. Therefore, reducing the computational complexity of
WPA is a real challenge.

In this paper we propose an improvement of the water
pouring algorithm by reducing the computational complexity
from O(M2

t ) to O(Mt).
The rest of the paper is as follows. Section 2 introduces the

MIMO channel model and discusses the corresponding power
allocation using WPA, which is O(M2

t ). Section 3 establishes
a modified version of WPA that is O(Mt). Section 4 presents
a numerical example comparing both algorithms. Finally,
concluding remarks are included in Section 5.

II. MIMO CHANNEL MODEL AND WATER POURING
PRINCIPLE

Let us consider the MIMO system of Mt transmitting and
Mr receiving antennas (Fig. 1) that operate in Rayleigh fading
propagation channel with the channel matrix

H = Rr
1/2HNR1/2

t , (1)

where HN ∈ CMr×Mt is the i.i.d. complex values CN (0, 1)
which are the collection of all channel propagation coeffi-
cients, Rr and Rt are receiver and transmitter correlation
matrix, respectively.

Assuming that Rr is the identity matrix, we consider the
case with correlation at the transmitter side only. For the
uniform linear array, the correlation coefficient rij between
ith and jth transmitting antennas is [2]

rij = J0 [2π(i− j)d/λ] , (2)

where J0(x) is the zero order Bessel function of the first kind,
and d/λ is an inter-element distance to the carrier wavelength
ratio.

Furthermore, we ignore the large scale propagation attenu-
ation of the received signal, assuming that

∑Mt

j=1 E{|hij |2} =
Mt, i = 1, 2, . . . ,Mr, where E{·} is the expectation operator,
and hij are the elements of the matrix H. This implies that
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Fig. 1. MIMO system with adjustable channel power allocation factors

each of the receiver antenna receives a power, which is equal
to the total transmitted power Es.

We assume that channel matrix is estimated at the receiver
side, and the resulting CSI is retransmitted to the transmitter
through a feedback channel. As a result, the singular value de-
composition H = UΣV† could be available, where U and V
are corresponding receiver and transmitter beamforming matri-
ces with orthonormal properties, Σ = diag {σ1, σ2, . . . , σr} is
a diagonal matrix with the singular values entries, r is the rank
of the matrix H, and † is a conjugate and transpose symbol.

Since the transmitted signal s is a Mt×1 column vector with
i.i.d. Gaussian entries si, i = 1, 2, . . . ,Mt, the covariance
matrix of the transmitted signal is

Rss = E
{
ss†

}
(3)

= diag {γ1, γ2, . . . , γMt
} ,

where γi = E
{
|si|2

}
, i = 1, 2, . . . ,Mt is the ith subchannel

power allocation factor which helps to feed each transmitting
antenna with corresponding transmitted power as Fig 1 shows.

The received signal of MIMO system is given by

y =
√
Es

Mt
Hs + n, (4)

where y is an Mr×1 column vector with the elements yi, i =
1, 2, . . . ,Mr, and the corresponding covariance matrix of the
received signal is

Ryy =
Es

Mt
HRssH† +N0IMr , (5)

where N0 is a white Gaussian noise power and IMr is the
identity matrix of size Mr. According to (5) the amount of
information that output signal consists is a function of γi, i =
1, 2, . . . ,Mt, which in turn depends on the CSI.

When CSI is not available to the transmitter, more simple
power allocation strategy is to set γi = 1 in (3), which yields
the following resulting channel capacity

C = log det (IMr
+ βΛ) , (6)

where β = Es/N0
Mt

, and Λ = diag {λ1, λ2, . . . , λMr
} , λi ≥

λi+1, is generated through the eigenvalue decomposition of the
semidefine matrix HH† = QΛQ† [6]; thus we have

√
λi = σi

for i = 1, 2, . . . , r.
Unfortunately, such kind of power allocation strategy does

not allow to achieve the maximum channel throughput. Opti-
mization of the MIMO channel capacity requires the solution
of the following maximization problem subject to transmitter
power constraint [7]

C = max
Tr(Rss)=Mt

log det
(
IMr

+ βHRssH†) , (7)

where Tr(·) means the matrix trace operator.
The solution of (7) leads to the water-pouring principle that

maximizes the MIMO channel capacity by allocating more
power to the channel that is in good condition and less or none
at all to the bad ones [4]. By doing so, the resulting MIMO
channel capacity is maximized and (7) can be expressed as
the sum of the individual parallel SISO (single-input-single-
output) channel capacities

C = maxPr
i=1 γi=Mt

r∑
i=1

log (1 + βγiλi) . (8)

To introduce WPA we assume that CSI in the transmitter
side is known, the matrix Λ is available, and the rank r of the
matrix H is estimated. For the sake of notation convenience,
we introduce the matrix Ψ = diag{ψ1, ψ2, . . . , ψr} with the
reciprocal elements of λi, i = 1, 2, . . . , r, i.e.Ψ = Λ−1. WPA
consists of the following steps [4], [5].

1) Initialization. Setup the values Mt, β, r, and Ψ.
2) For p = 1, 2, . . . , r calculate the constant

µp = 1
r−p+1

(
Mt + β−1

∑r−p+1
i=1 ψi

)
.

3) For j = 1, 2, . . . , r − p + 1 allocate the power for j
subchannel as
γj = µp − β−1ψj .
end j

4) If γr−p+1 < 0, then put γr−p+1 = 0 and return to the
step 2 assigning p = p+1, otherwise the algorithm ends.
The resulting values of γj correspond to the optimum
power allocation strategy.

According to WPA, the optimum subchannel power (like-
wise the energy) allocation requires recurrent computation.
The most tense case is when r = Mt and p = 1, 2, . . . ,Mt.
For this case the computational work of step 2 is 2Mt

multiplications and 0.5(M2
t +Mt) summations. Step 3 requires

0.5(M2
t +Mt) multiplications and 0.5(M2

t +Mt) summations.
Combining step 2 and step 3 the total computational work is
0.5M2

t + 2.5Mt and M2
t + Mt multiplications and summa-

tions, respectively. Obviously that this is the second degree
polynomial computational complexity.

Although WPA optimize the energy allocation for all sub-
channels, yielding the maximum channel capacity, the on-
line implementation of WPA is rather restricted due to hight
computational complexity. Therefore, for practical reason,
WPA is often replaced by the simplest solution, where the



transmitted energy is distributed uniformly among all trans-
mitting antennas [8]. Since this practice avoids using WPA,
the uniformly power allocation strategy is not optimal, and
the channel capacity is reduced.

III. WATER POURING ALGORITHM IMPROVEMENT

Despite the matrix HH† is semidefine, i.e. λi ≥ 0, i =
1, 2, . . . ,Mt, negative values of γr−p+1 can appear frequently,
and as a consequence, some channels should be discarded. As
a matter of fact, the larger the condition number of HH†, the
more channels are discarded, where the condition number is
define as λ1/λr, where λr 6= 0.

For example, at low signal-to-noise-ratio the condition
number is high enough, and the solution is reduced to the
case of beamforming, i.e., only the channel with the highest
eigenvalue is in use. Thus, the traditional WPA keeps repeating
itself by increasing p by one every time when negative values
of γr−p+1 is encountered, computing the new values of µp

and γj , j = 1, 2, . . . , r − p + 1 for every new value of p.
Since the convergence of WPA for mentioned case is slow.
This situation is unfavorable in computational sense.

On the other hand, when all subchannels have the high
signal-to-noise-ratio it yields small condition number of HH†

and all eigenvalues are close to each other. This leads to almost
uniform power allocation, which is more favorable from point
of view of computational work, because the convergence is
fast.

Since H is random, the corresponding condition numbers,
which affects the performance of WPA, is also random.
Thus, from WPA implementation point of view, the upper
bound computational work of O(M2

t ) has to be taken into
consideration.

In the highly non-stationary communication scenario, H
changes frequently, and any computational delay (which de-
pends on the computational work) can cause the information
about energy allocation to be obsolete; it degrades the channel
capacity. This requires minimization of the computational
work as much as possible.

We propose the modified WPA that requires only O(Mt)
operations in the worst case, and it is almost independent on
the propagation channel condition number.

Accordingly, the term γj presented in step 3 of WPA is
negative only when

µp < β−1ψj . (9)

We rewrite (9) for the case when j = r − p+ 1 as

1
r − p+ 1

[
Mt + β−1 (ψ1 + ψ2 + . . .+ ψr−p+1)

]
< β−1ψr−p+1. (10)

Multiplying both sides of (10) by β(r − p + 1), and then
removing the term ψr−p+1 from the left side of the inequality
to the right one we get

βMt + ψ1 + ψ2 + . . .+ ψr−p < (r − p)ψr−p+1. (11)

Since β = Es/N0
Mt

, we can rewrite the decision rule as

αp Q 0, (12)

where

αp = Es/N0 +
r−p∑
i=1

(ψi − ψr−p+1) . (13)

Hence, negative αp in (12) indicates that the power alloca-
tion algorithm for a given p has a negative solution at least
for a channel r− p+ 1, and therefore it does not make sense
to compute γj for j = 1, 2, . . . , r − p + 1 . On the other
hand, the positive value αp indicates that WPA for channel
r − p + 1 has a positive solution, i.e. γr−p+1 > 0, as well
as for the previous channels, i.e. γj > 0, where j < r − p;
for the remaining channels the power allocation algorithm has
a negative solution and therefore, those channels should be
discarded. The case αp = 0 is a border line decision case that
can be joined to one of the aforementioned cases.

All in all, we can present the following modified water
pouring algorithm (MWPA)

1) Given the values Mt, β, r and Ψ.
2) For p = 1, 2, . . . , r calculate αp with (13)

If αp ≤ 0, then p = p+ 1,
If αp > 0, then popt = p. Compute
µpopt = 1

r−popt+1

(
Mt + β−1

∑r−popt+1
i=1 ψi

)
,

and go to Step 3
end p

3) For j = 1, 2, . . . , r − popt + 1 allocate the power for j
subchannel as
γj = µpopt − β−1ψi.
end j

4) Discard the channels j > r−popt +1 by allocating zero
power on each. Resulting values of γj correspond to the
optimum power allocation strategy.

Now, the optimum sub-channel power allocation algorithm
does not require recurrent computation. Computational work
depends on r and popt. Two boundary cases of complexity can
be considered. First boundary is when r = Mt and popt = 1.
Thus, step 2 require two multiplications and Mt summations,
and step 3 require Mt multiplications and Mt summations.
Combining step 2 and step 3 the total computational work is
Mt +2 multiplications and summations. The second boundary
is when r = Mt and popt = r. By doing analogously, the total
complexity is two multiplications and 0.5M2

t summations. Be-
cause the multiplication cost is much grater than summation,
we accept the first boundary as more tensible.

Fig. 2 presents the benchmarks of computational complexity
in terms of multiplications and summations vs. number of
transmitted antenna element for both conventional WPA and
MWPA. As Fig. 2 shows, the gain of MWPA over WPA keep
getting bigger with large number of Mt. As a result, using
MWPA can significantly simplify the WPA implementation,
making MWPA more attractive for MIMO applications than
traditional WPA.
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Fig. 2. WPA and MWPA computational complexity comparison

TABLE I
NUMERICAL EXAMPLE OF WPA SOLUTION

p µ γ1 γ2 γ3 γ4

p = 1 8.2595 8.2047 7.7170 2.8108 -14.7325
p = 2 3.3487 3.2939 2.8061 -2.1000 0
p = 3 2.2987 2.2439 1.7561 0 0

IV. NUMERICAL EXAMPLE

The objective of this simulation study is to compare nu-
merically the performance of the conventional WPA and its
modification. Accordingly, we consider uniform linear arrays
with Mt = Mr = 4, the ratio Es/N0 = 2, and d/λ = 1/2.
The first row of the transmitting matrix Rt according to (2) is
r1 = [1.0000;−0.3042; 0.2203;−0.1812]. The corresponding
real and image parts of the channel matrix H as well as its
eigenvalues matrix Λ presented below.

Re
{
H

}
=


0.8459 0.8411 0.0196 0.2112
−1.3603−1.9453−0.7849−0.1938
0.4768 0.2510 −0.1228−0.2380
−0.9921−0.7571 0.1009 −0.1963

 ,

Im
{
H

}
=


−0.0484−0.8005−0.0541 0.0928
1.7752 1.1112 1.9234 1.9799
1.5349 1.4888 1.5180 2.0033
−1.1970−1.5465−1.0858−1.5249

 ,
Λ = diag {36.4641 3.6861 0.3671 0.0870} .

Since all eigenvalues are positive, the matrix H has full
rank, i.e. r = Mt = 4. The channel power allocation with the
conventional WPA gives the values µp and γj , j = 1, 2, 3, 4,
presented in Table 1; the power allocation diagram depicted
in Fig 3, where n = 1, 2, 3, 4 is a virtual channel number, and
shadow areas related to the positive values of γn .

Table I as well as Fig 3 shows, WPA requires three iterations
with calculating nine values of γj , but only two values of γj

is required, when p = 3 (last row in the Table 1). All other
are unuseful and they computations are redundant.
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In the same time, the modified algorithm give us the
following result. The values αp is -29.4649, -3.1500, and
1.7561 for p = 1, 2, and 3, respectively. Therefore αopt = 3.
Accordingly, we get γj is 2.2439, 1.7561, 0.0000, and 0.0000
for j = 1, 2, 3, and 4, respectively.

It requires to calculate three times αp (easy, because ac-
cording to (13) contains only summation operations), then to
do three comparisons (simple logical OR operations), and
afterward to calculate only two significant values, γ1 and
γ2, versus nine values in the counterpart. Hence, the gain of
MWPA over conventional version in the presented numerical
example is about four times.

V. CONCLUSION

We proposed an improvement to the well-known water
pouring algorithm (WPA) that helps to allocate optimum
transmitted power among the transmitting antennas of MIMO
system. The improvement helps to diminish the computational
complexity of WPA from O(M2

t ) to O(Mt), where Mt is
the number of transmitting antennas, and as a consequence
increase the efficiency of the algorithm. This in turn reduces
the cost of implementation of multi-antenna MIMO systems.
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